日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,且AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
          (1)求證:AF⊥平面CBF.
          (2)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.
          (3)求四棱錐F-ABCD的體積.
          分析:(Ⅰ)欲證AF⊥平面CBF,根據(jù)直線與平面垂直的判定定理可知只需證AF與平面CBF內(nèi)兩相交直線垂直,根據(jù)面面垂直的性質(zhì)可知CB⊥平面ABEF,而AF?平面ABEF,則AF⊥CB,而AF⊥BF,滿足定理所需條件;
          (Ⅱ)欲證OM∥平面DAF,根據(jù)直線與平面平行的判定定理可知只需證OM與平面DAF內(nèi)一直線平行即可,設(shè)DF的中點(diǎn)為N,則MNAO為平行四邊形,則OM∥AN,又AN?平面DAF,OM不屬于平面DAF,滿足定理所需條件;
          (Ⅲ)過點(diǎn)F作FG⊥AB于G,根據(jù)面面垂直的性質(zhì)可知FG⊥平面ABCD,F(xiàn)G即正△OEF的高,然后根據(jù)三棱錐的體積公式進(jìn)行求解即可.
          解答:解:(Ⅰ)證明:∵平面ABCD⊥平面ABEF,CB⊥AB,
          平面ABCD∩平面ABEF=AB
          ∴CB⊥平面ABEF∵AF?平面ABEF
          ∴AF⊥CB
          又AB為圓O的直徑∴AF⊥BF
          ∴AF⊥平面CBF
          (Ⅱ)設(shè)DF的中點(diǎn)為N,則MN
          .
          .
          1
          2
          CD
          又AO
          .
          .
          1
          2
          CD
          ,精英家教網(wǎng)
          ∴MN
          .
          .
          AO∴MNAO為平行四邊形
          ∴OM∥AN,
          又AN?平面DAF,OM不屬于平面DAF
          ∴OM∥平面DAF
          (Ⅲ)過點(diǎn)F作FG⊥AB于G∵平面ABCD⊥平面ABEF,
          ∴FG⊥平面ABCD,F(xiàn)G即正△OEF的高
          FG=
          3
          2
          ∴SABCD=2
          VF-ABCD=
          1
          3
          SABCD•FG=
          2
          3
          FG=
          3
          3
          點(diǎn)評(píng):本題主要考查直線與平面平行的判定,以及直線與平面垂直的判定和三棱錐的體積的計(jì)算,體積的求解在最近兩年高考中頻繁出現(xiàn),值得重視.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
          精英家教網(wǎng)
          (Ⅰ)求證:BD⊥平面ADG;
          (Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

          (文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
          (Ⅰ)求證:AF⊥平面CBF;
          (Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省濟(jì)南市高三12月質(zhì)量檢測(cè)數(shù)學(xué)文卷 題型:解答題

          (本小題滿分12分)如圖,AB為圓O的直

          徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD

          所在的平面和圓O所在的平面垂直,且.

          ⑴求證:;

          ⑵設(shè)FC的中點(diǎn)為M,求證:;

          ⑶設(shè)平面CBF將幾何體分成的兩個(gè)錐體的體積分別為,求的值.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

          (Ⅰ)求證:BD⊥平面ADG;
          (Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

          (文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
          (Ⅰ)求證:AF⊥平面CBF;
          (Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年遼寧省錦州市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

          (理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

          (Ⅰ)求證:BD⊥平面ADG;
          (Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

          (文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
          (Ⅰ)求證:AF⊥平面CBF;
          (Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:陜西省寶雞中學(xué)2010屆高三適應(yīng)性訓(xùn)練(數(shù)學(xué)理) 題型:填空題

           A.(參數(shù)方程與極坐標(biāo))

          直線與直線的夾角大小為         

           

          B.(不等式選講)要使關(guān)于x的不等式在實(shí)數(shù)

          范圍內(nèi)有解,則A的取值范圍是                  

          C.(幾何證明選講) 如圖所示,在圓O中,AB是圓O的直

          徑AB =8,E為OB.的中點(diǎn),CD過點(diǎn)E且垂直于AB,

          EF⊥AC,則

          CF•CA=            

           

           

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案