日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•安徽模擬)已知函數(shù)f(x)=2x3-3ax2+(a2+2)x-a(a∈R).
          (I)若當(dāng)x=1時(shí),函數(shù)f(x)取得極值,求a的值;
          (II)若函數(shù)f(x)僅有一個(gè)零點(diǎn),求a的取值范圍.
          分析:(I)先求導(dǎo)數(shù)fˊ(x)然后在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的區(qū)間為單調(diào)增區(qū)間,fˊ(x)<0的區(qū)間為單調(diào)減區(qū)間,從而得出函數(shù)的極值情況.
          (II)由函數(shù)零點(diǎn)的存在定理,我們可以將函數(shù)的解析式進(jìn)行因式分解,最后綜合條件,即可得到f(x)=0有且僅有一個(gè)實(shí)數(shù)解,則實(shí)數(shù)a的取值可得.
          解答:解:f′(x)=6x2-6ax+(a2+2),
          (I)f′(1)=6-6a+(a2+2),令f′(x)=0,解得a=2或a=4,
          當(dāng)a=2時(shí),f′(x)=6x2-12x+6=6(x-1)2,顯然f(x)在x=1處不取得極值;
          當(dāng)a=4時(shí),f′(x)=6x2-24x+18=6(x-1)(x-3),
          顯然f(x)在x=1處取得極大值.
          故a的值為4.
          (II)f(x)=2x3-3ax2+(a2+2)x-a
          =(2x3-2ax2+2x)-(ax2-a2x+a)
          =(x2-ax+1)(2x-a)
          得f(x)的一個(gè)零點(diǎn)是
          a
          2
          ,又函數(shù)f(x)僅有一個(gè)零點(diǎn),
          ∴△=(-a)2-4×1×1<0,解得-2<a<2,
          故a的取值范圍(-2,2).
          點(diǎn)評(píng):本題考查了函數(shù)在某點(diǎn)取得極值的條件、利用導(dǎo)數(shù)研究函數(shù)的極值,函數(shù)零點(diǎn)的判定定理,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•安徽模擬)在復(fù)平面內(nèi),復(fù)數(shù)z=
          1+i
          i-2
          對(duì)應(yīng)的點(diǎn)位于( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•安徽模擬)定義在R上的奇函數(shù)f(x)滿足:x≤0時(shí)f(x)=ax+b(a>0且a≠1),f(1)=
          1
          2
          ,則f(2)=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•安徽模擬)(理)若變量x,y滿足約束條件
          x+y-3≤0
          x-y+1≥0
          y≥1
          ,則z=|y-2x|的最大值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•安徽模擬)下列說(shuō)法不正確的是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•安徽模擬)已知f(x)=2
          3
          sinx+
          sin2x
          sinx

          (1)求f(x)的最大值,及當(dāng)取最大值時(shí)x的取值集合.
          (2)在三角形ABC中,a,b,c分別是角A,B,C所對(duì)的邊,對(duì)定義域內(nèi)任意x,有f(x)≤f(A),若a=
          3
          ,求
          AB
          AC
          的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案