日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓經(jīng)過點M(﹣2,﹣1),離心率為.過點M作傾斜角互補的兩條直線分別與橢圓C交于異于M的另外兩點P、Q.

          (Ⅰ)求橢圓C的方程;

          (Ⅱ)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.

          【答案】(1)(2)見解析

          【解析】(1)由題設(shè),得1,

          、解得a26,b23,故橢圓C的方程為1.

          (2)設(shè)直線MP的斜率為k,則直線MQ的斜率為-k,

          假設(shè)∠PMQ為直角,則k·(k)=-1,即k±1.

          k1,則直線MQ的方程為y1=-(x2),與橢圓C方程聯(lián)立,得x24x40,

          該方程有兩個相等的實數(shù)根-2,不合題意;

          同理,若k=-1也不合題意.故∠PMQ不可能為直角.記P(x1,y1)、Q(x2,y2)

          設(shè)直線MP的方程為y1k(x2),與橢圓C的方程聯(lián)立,得(12k2)x2(8k24k)x8k28k40,

          則-2x1是該方程的兩根,則-2x1,即x1.

          設(shè)直線MQ的方程為y1=-k(x2),同理得x2.

          y11k(x12),y21=-k(x22),

          kPQ1,

          因此直線PQ的斜率為定值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率等于,它的一個頂點恰好是拋物線的焦點,

          求橢圓C的標(biāo)準(zhǔn)方程;

          過橢圓C的右焦點作直線l交橢圓C于A、B兩點,交y軸于M點,若為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x0,f(x)=-x2+ax.

          (1)a=-2,求函數(shù)f(x)的解析式;

          (2)若函數(shù)f(x)R上的單調(diào)減函數(shù),

          a的取值范圍;

          若對任意實數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機動車行經(jīng)人行橫道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

          月份

          1

          2

          3

          4

          5

          違章駕駛員人數(shù)

          120

          105

          100

          90

          85

          (1)請利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+

          (2)預(yù)測該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);

          (3)交警從這5個月內(nèi)通過該路口的駕駛員中隨機抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:

          不禮讓斑馬線

          禮讓斑馬線

          合計

          駕齡不超過1年

          22

          8

          30

          駕齡1年以上

          8

          12

          20

          合計

          30

          20

          50

          能否據(jù)此判斷有97.5的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?

          參考公式及數(shù)據(jù):,.

          0.150

          0.100

          0.050

          0.025

          0.010

          0.005

          0.001

          k

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          (其中n=a+b+c+d)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某果農(nóng)選取一片山地種植紅柚,收獲時,該果農(nóng)隨機選取果樹20株作為樣本測量它們每一株的果實產(chǎn)量(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間(40,45],(45,50],(50,55],(55,60]進(jìn)行分組,得到頻率分布直方圖如圖.已知樣本中產(chǎn)量在區(qū)間(45,50]上的果樹株數(shù)是產(chǎn)量在區(qū)間(50,60]上的果樹株數(shù)的倍.

          (1)求、的值;

          (2)求樣本的平均數(shù);

          (3)從樣本中產(chǎn)量在區(qū)間(50,60]上的果樹里隨機抽取兩株,求產(chǎn)量在區(qū)間(55,60]上的果樹至少有一株被抽中的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,

          (1)求橢圓的方程;

          (2)設(shè)直線與橢圓交于,兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面,底面是直角梯形,,上的一點.

          (1)求證:平面平面;

          (2)若的中點,,且直線與平面所成角的正弦值為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù)同時滿足:(1)對于定義域內(nèi)的任意,有;(2)對于定義域內(nèi)的任意,當(dāng)時,有,則稱函數(shù)理想函數(shù).給出下列四個函數(shù):①;②;③;④.

          其中是理想函數(shù)的序號是( )

          A.①②B.②③C.②④D.③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是橢圓)的左頂點,左焦點是線段的中點,拋物線的準(zhǔn)線恰好過點

          (1)求橢圓的方程;

          (2)如圖所示,過點作斜率為的直線交橢圓于點,交軸于點,若為線段的中點,過作與直線垂直的直線,證明對于任意的),直線過定點,并求出此定點坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案