日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),a為常數(shù)

          1)判斷fx)在定義域內(nèi)的單調(diào)性

          2)若fx)在上的最小值為,求a的值

          【答案】(1) f(x)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,

          (2) a=-

          【解析】試題分析:(1)f(x)的定義域?yàn)椋?,+∞),f′(x).,由此利用導(dǎo)數(shù)性質(zhì)能求出f(x)在(0,+∞)上單調(diào)遞增.

          (2)由(1)根據(jù)a的取值范圍分類討論,由此利用導(dǎo)數(shù)性質(zhì)能求出a的值.

          試題解析:

          (1)由題意f(x)的定義域?yàn)?0,+∞),且f′(x)=.

          當(dāng)a0時(shí), (x)>0恒成立,故f(x)在(0,+∞)上是單調(diào)遞增函數(shù).

          當(dāng)a<0時(shí), (x)>0 ,得x>-a; (x)<0 ,得x<-a,

          所以f(x)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

          (2)由(1)可知,f′(x)=.

          ①若a≥-1,則xa≥0,即f′(x)≥0在[1,e]上恒成立,此時(shí)f(x)在[1,e]上為增函數(shù),所以f(x)minf(1)=-a,所以a=-(舍去).

          ②若a≤-e,則xa≤0,即f′(x)≤0在[1,e]上恒成立,此時(shí)f(x)在[1,e]上為減函數(shù),所以f(x)minf(e)=1-a=-(舍去).

          ③若-e<a<-1,令f′(x)=0得x=-a,當(dāng)1<x<-a時(shí),f′(x)<0,所以f(x)在[1,-a]上為減函數(shù);當(dāng)-a<x<e時(shí),f′(x)>0,所以f(x)在[-a,e]上為增函數(shù),所以f(x)minf(-a)=ln(-a)+1=a=-.

          綜上所述,a=-.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線l的參數(shù)方程為 (t為參數(shù)).
          (1)求曲線C1的直角坐標(biāo)方程及直線l的普通方程;
          (2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線C1上點(diǎn)P的極角為 ,Q為曲線C2上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線l距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】直角坐標(biāo)系和極坐標(biāo)系的原點(diǎn)與極點(diǎn)重合, 軸正半軸與極軸重合,單位長度相同,在直角坐標(biāo)系下,曲線C的參數(shù)方程為為參數(shù))。

          1)在極坐標(biāo)系下,曲線C與射線和射線分別交于A,B兩點(diǎn),求的面積;

          2)在直角坐標(biāo)系下,直線的參數(shù)方程為為參數(shù)),求曲線C與直線的交點(diǎn)坐標(biāo)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著節(jié)假日外出旅游人數(shù)增多,倡導(dǎo)文明旅游的同時(shí),生活垃圾處理也面臨新的挑戰(zhàn),某海濱城市沿海有三個(gè)旅游景點(diǎn),在岸邊兩地的中點(diǎn)處設(shè)有一個(gè)垃圾回收站點(diǎn)(如圖),兩地相距10,從回收站觀望地和地所成的視角為,且,設(shè);

          (1)用分別表示,并求出的取值范圍;

          (2)某一時(shí)刻太陽與三點(diǎn)在同一直線,此時(shí)地到直線的距離為,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)A的極坐標(biāo)為(3, ),點(diǎn)B的極坐標(biāo)為(6, ),曲線C:(x﹣1)2+y2=1
          (1)求曲線C和直線AB的極坐標(biāo)方程;
          (2)過點(diǎn)O的射線l交曲線C于M點(diǎn),交直線AB于N點(diǎn),若|OM||ON|=2,求射線l所在直線的直角坐標(biāo)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=ex+ax2(a∈R).
          (1)若函數(shù)f(x)在R上單調(diào),且y=f′(x)有零點(diǎn),求a的值;
          (2)若對x∈[0,+∞),有 ≥1,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),,

          (1)求不等式的解集;

          (2)若對一切,均有成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=bcosC+ csinB.
          (1)若a=2,b= ,求c
          (2)設(shè)函數(shù)y= sin(2A﹣30°)﹣2sin2(C﹣15°),求y的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知各項(xiàng)均不相等的等差數(shù)列{an}滿足a1=1,且a1 , a2 , a5成等比數(shù)列.
          (1)求{an}的通項(xiàng)公式;
          (2)若bn=(﹣1)n (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          同步練習(xí)冊答案