日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 長方體ABCD-A1B1C1D1中,AA1=
          2
          ,AB=BC=2,O是底面對角線的交點.
          (Ⅰ)求證:B1D1平面BC1D;
          (Ⅱ)求證:A1O⊥平面BC1D;
          (Ⅲ)求三棱錐A1-DBC1的體積.
          (Ⅰ)證明:依題意:B1D1BD,且B1D1在平面BC1D外.(2分)
          ∴B1D1平面BC1D(3分)
          (Ⅱ)證明:連接OC1
          ∵BD⊥AC,AA1⊥BD
          ∴BD⊥平面ACC1A1(4分)
          又∵O在AC上,∴A1O在平面ACC1A1
          ∴A1O⊥BD(5分)
          ∵AB=BC=2∴AC=A1C1=2
          2

          OA=
          2

          ∴Rt△AA1O中,A1O=
          AA12+OA2
          =2
          (6分)
          同理:OC1=2
          ∵△A1OC1中,A1O2+OC12=A1C12
          ∴A1O⊥OC1(7分)
          ∴A1O⊥平面BC1D(8分)
          (Ⅲ)∵A1O⊥平面BC1D
          ∴所求體積V=
          1
          3
          A1O•
          1
          2
          •BD•OC1
          (10分)
          =
          1
          3
          •2•
          1
          2
          •2
          2
          •2=
          4
          2
          3
          (12分)
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          正四面體的四個頂點都在表面積為36π的一個球面上,則這個正四面體的高等于______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,在正方體ABCD-A1B1C1D1中,E是棱DD1的中點.
          (1)求直線BE和直線CD所成角的余弦值;
          (2)在棱C1D1上是否存在一點F,使B1F平面A1BE?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,空間四邊形ABCD被一平面所截,截面EFGH是平行四邊形.
          (1)求證:CD平面EFGH;
          (2)如果AB=CD=a,求證:四邊形EFGH的周長為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如下的三個圖中,左面的是一個長方體截去一個角所得多面體的直觀圖,它的主視圖和左視圖在右面畫出(單位:cm).(1)按照給出的尺寸,求該多面體的體積;(2)在所給直觀圖中連結(jié)BC′,證明:BC′面EFG.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥面ABCD,AP=AB=2,BC=2
          2
          ,E、F分別是AD、PC的中點.
          (1)求證:EF面PAB;
          (2)求EF與面ABCD所成角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形,
          (Ⅰ)求證:MD平面APC;
          (Ⅱ)求證:平面ABC⊥平面APC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,在直三棱柱ABC-A1B1C1中,AB=A1B1,AC1⊥平面A1BD,D為AC的中點.(Ⅰ)求證:B1C平面A1BD;
          (Ⅱ)求證:B1C1⊥平面ABB1A1;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          四棱錐P-ABCD中,平面PAD⊥平面ABCD,△PAD是正三角形,底面四邊形ABCD是菱形,∠DAB=60°,E為PC中點,F(xiàn)是線段DE上任意一點.
          (1)求證:AD⊥PB;
          (2)若點M為AB的中點,N為DC的中點,求證:平面EMN平面PAD;
          (3)設(shè)P,A,F(xiàn)三點確定的平面為a,平面a與平面DEB的交線為l,試判斷直線PA與l的位置關(guān)系,并證明之.

          查看答案和解析>>

          同步練習(xí)冊答案