日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)

          如圖,在四棱錐P-ABCD中,PB⊥底面,CD⊥PD,底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,點E在棱PA上,且PE=2EA。(1)求異面直線PA與CD所成的角;(2)求證:PC∥平面EBD;(3)求二面角A-BE-D的大小。

          (Ⅰ) ∠PAF=60° (Ⅱ)   略  (3)


          解析:

          解法一:(1)由PB⊥面ABCD,CD⊥PD知CD⊥BD

          在直角梯形ABCD中,AD⊥AB,AB=AD=3,

          ∴BD=,BC=6

          取BC的中點F,連結(jié)AF,則AF∥CD,

          ∴PA與CD所成的角就是∠PAF   (4分)

          連PF由題設(shè)易知AF=PF=PA=,

          ∴∠PAF=60°即為所求     (6分)

          (2)連AC交BD于G,連EG,易知,

          ,∴PC∥EG,又EG面EBD,∴PC∥面EBD  (10分)

          (3)∵PB⊥面ABCD,∴AD⊥PB,又AD⊥AB,∴AD⊥面EAB

          作AH⊥BE于H,連DH,則DH⊥BE,   (12分)

          在△AEB中,易求得BE=,

          △DAH中,

          即所求二面角的大小為  (14分)

          解法二:(1)如圖建立空間直角坐標(biāo)系,設(shè)

          則A(0,3,0),P(0,0,3)D(3,3,0),C(,0,0),=,∴,即:3(3-)+9=0  (2分)

          ,即異面直線PA與CD所成的交為60°            (6分)

          (2)設(shè)平面BED的法向量為  ∵

          ,∴       (12分)

          又由(1)知,∴,∴PC∥面EBD  (10分)

          (3)由(2)知

          又平面ABE的法向量

          故所求二面角的大小為                                 (14分)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (文) (本小題滿分12分已知函數(shù)y=4-2
          3
          sinx•cosx-2sin2x(x∈R)

          (1)求函數(shù)的值域和最小正周期;
          (2)求函數(shù)的遞減區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•自貢三模)(本小題滿分12分>
          設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
          ON
          |=6,
          ON
          =
          5
          OM
          .過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
          OT
          =
          M1M
          +
          N1N
          ,記點T的軌跡為曲線C.
          (I)求曲線C的方程:
          (H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
          OP
          =3
          OA
          ,S△PAQ=-26tan∠PAQ求直線L的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009湖南卷文)(本小題滿分12分)

          為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

          (I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

          (II)至少有1人選擇的項目屬于民生工程的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分12分)

          某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

          (注:利潤與投資單位是萬元)

          (1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

          查看答案和解析>>

          同步練習(xí)冊答案