日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (08年西工大附中理)如圖,已知正三棱柱ABC,DAC的中點,∠DC = 60°

              (Ⅰ)求證:A∥平面BD;

          (Ⅱ)求二面角DBC的大小。



           

           

          解析:解法一:

          (Ⅰ)連結(jié)B1CBCO,則OBC的中點,連結(jié)DO。

          ∵在△AC中,OD均為中點,

          ADO   …………………………2分

          A平面BD,DO平面BD,

          A∥平面BD!4分

          (Ⅱ)設正三棱柱底面邊長為2,則DC = 1。

              ∵∠DC = 60°,∴C=

          DEBCE。

          ∵平面BC⊥平面ABC

          DE⊥平面BC

          EFBF,連結(jié)DF,則 DF⊥B

          ∴∠DFE是二面角D-B-C的平面角……………………………………8分

          RtDEC中,DE=

          RtBFE中,EF = BE?sin

          ∴在RtDEF中,tan∠DFE =

          ∴二面角DBC的大小為arctan………………12分

          解法二:以AC的中D為原點建立坐標系,如圖,

          設| AD | = 1∵∠DC =60°∴| C| =

               則A(1,0,0),B(0,,0),C(-1,0,0),

          (1,0), ,

          (Ⅰ)連結(jié)CBOC的中點,連結(jié)DO,則                  O.       =

          A平面BD,

          A∥平面BD.……………………………………………………………4分

          (Ⅱ)=(-1,0,),

                 設平面BD的法向量為n = ( x , y , z ),則

                 即  則有= 0令z = 1

          n = (,0,1)…………………………………………………………8分

                 設平面BC的法向量為m = ( x′ ,y′,z′)

             =(0,0,),,

            

           

             

                令y = -1,解得m = (,-1,0)

           

                二面角DBC的余弦值為cos<n , m>=

          ∴二面角DBC的大小為arc cos          …………12分

           

           

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (08年西工大附中理)一廠家向用戶提供的一箱產(chǎn)品共10件,其中有2件次品,用戶先對產(chǎn)品進行不放回抽檢以決定是否接收  抽檢規(guī)則是這樣的:一次取一件產(chǎn)品檢查,若前三次沒有抽查到次品,則用戶接收這箱產(chǎn)品,而前三次中只要抽查到次品就停止抽檢,并且用戶拒絕接收這箱產(chǎn)品 

          (I)求這箱產(chǎn)品被用戶拒絕接收的概率;

          (II)記x表示抽檢的產(chǎn)品件數(shù),求x的概率分布列及期望 

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (08年西工大附中理)已知雙曲線C:的右準線與一條漸近線交于點M,F(xiàn)是右焦點,若,且雙曲線C的離心率e=.

          (1).求雙曲線C的方程;

          (2).過點A(0,1)的直線l與雙曲線C的右支交于不同兩點P、Q,且P在A、Q之間,若,求直線l斜率k的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (08年西工大附中理)函數(shù)過曲線y=f(x)上的點P(1,f(1))處的切線方程為y=3x+1

                 (1)若y=f(x)在x=-2時有極值,求f(x)的表達式;

                 (2)若函數(shù)y=f(x)在區(qū)間上單調(diào)遞增,求b的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (08年西工大附中理)如圖,在四棱錐中,底面是一直角梯形,,,,且平面,與底面成角.

           

          (Ⅰ) 求證:平面平面

          (Ⅱ) 求二面角的大;

                (Ⅲ) 若,為垂足,求異面直線所成角的大。

          查看答案和解析>>

          同步練習冊答案