(本題滿分12分)
設函數(shù),
(1) 如果且對任意實數(shù)
均有
,求
的解析式;
(2) 在(1)在條件下, 若在區(qū)間
是單調(diào)函數(shù),求實數(shù)
的取值范圍;
(3) 已知且
為偶函數(shù),如果
,求證:
.
(1);(2)
的取值范圍是
;
(3) .
【解析】
試題分析: (1) 根據(jù)二次函數(shù)的函數(shù)值f(1)=0和函數(shù)值恒大于等于零得到及解析式。
(2) 在(1)在條件下,要是函數(shù)單調(diào)遞增,則根據(jù)對稱軸與定義域的關系分類討論得到。
(3) 結(jié)合奇偶性的性質(zhì),以及函數(shù)單調(diào)性得到不等式的證明。
解(1)∵,∴
(1分)
對任意實數(shù)
均有
恒成立,
即對任意實數(shù)均有
恒成立(2分)
當時,
,這時,
,它不滿足
恒成立(3分)
當時,則
且
,
(4分)
從而,∴
(5分)
(2)由(1)知
∴=
(6分)
在區(qū)間
是單調(diào)函數(shù)
或
,即
或
的取值范圍是
(7分)
(3) ∵是偶函數(shù),∴
(8分)
故,
(9分)
∵,∴當
時
中至少有一個正數(shù),即
都是正數(shù)或一個正數(shù),一個負數(shù)
若都是正數(shù),則
,所以
(10分)
若一個正數(shù),一個負數(shù),不妨設
,又
則=
(11分)
綜上可得,.(12分)
考點:本題主要考查了二次函數(shù)與分段函數(shù)的性質(zhì)運用。
點評:解決該試題的關鍵是能通過解析式的特點以及二次函數(shù)的性質(zhì),來得到判別式小于等于零,從而得到解析式。
科目:高中數(shù)學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分12分)已知數(shù)列是首項為
,公比
的等比數(shù)列,,
設,數(shù)列
.
(1)求數(shù)列的通項公式;(2)求數(shù)列
的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年上海市金山區(qū)高三上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年安徽省高三10月月考理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)
設函數(shù)(
,
為常數(shù)),且方程
有兩個實根為
.
(1)求的解析式;
(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年重慶市高三第二次月考文科數(shù)學 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形
是邊長為
的正方形,
,
為
上的點,且
⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大;
(Ⅲ)求點到平面
的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com