日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若對(duì)于正整數(shù)k、g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(20)=5,并且g(2m)=g(m)(m∈N*),設(shè)Sn=g(1)+g(2)+g(3)+…g(2n)
          (Ⅰ)求S1、S2、S3;
          (Ⅱ)求Sn
          分析:(Ⅰ)由對(duì)于正整數(shù)k、g(k)表示k的最大奇數(shù)因數(shù),g(2m)=g(m)(m∈N*),S1=g(1)+g(2),S2=g(1)+g(2)+g(3)+g(4),S3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8),能求出S1,S2,S3
          (Ⅱ)由g(2m)=g(m),n∈N+,知Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n)=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]=[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2•2n-1)],得Sn-Sn-1=4n-1,由此能求出Sn
          解答:解:(Ⅰ)S1=g(1)+g(2)=1+1=2
          S2=g(1)+g(2)+g(3)+g(4)=1+1+3+1=6
          S3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8)=1+1+3+1+5+3+7+1=22
          (Ⅱ)∵g(2m)=g(m),n∈N+
          Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n)
          =[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]
          =[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2•2n-1)]
          =
          (1+2n-1)•2n-1
          2
          +[g(1)+g(2)+…g(2n-1)]
          =4n-1+Sn-1
          Sn-Sn-1=4n-1
          ∴Sn=(Sn-Sn-1)+(Sn-1-Sn-2)+…+(S2-S1)+S1
          =4n-1+4n-2+…+42+4+2=
          4(4n-1-1)
          4-1
          +2=
          1
          3
          4n+
          2
          3
          點(diǎn)評(píng):本題考查數(shù)列的綜合運(yùn)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.綜合性強(qiáng),難度大,有一定的探索性,對(duì)數(shù)學(xué)思維能力要求較高,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          若對(duì)于正整數(shù)k,g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(10)=5.設(shè)Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n).
          (Ⅰ)求g(6),g(20)的值;
          (Ⅱ)求3S1-2,3S2-2,3S3-2的值;并由此猜想{Sn}的通項(xiàng)公式(不必證明)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若對(duì)于正整數(shù)k,g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(10)=5;設(shè)Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n),則數(shù)列{Sn}的通項(xiàng)公式是
          Sn=
          1
          3
          (4n+2)
          Sn=
          1
          3
          (4n+2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若對(duì)于正整數(shù)k、g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(20)=5,并且g(2m)=g(m)(m∈N*),設(shè)Sn=g(1)+g(2)+g(3)+…g(2n)
          (Ⅰ)求S1、S2、S3;
          (Ⅱ)求Sn
          (III)設(shè)bn=
          1
          Sn-1
          ,求證數(shù)列{bn}的前n頂和Tn
          3
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東城區(qū)一模)若對(duì)于正整數(shù)k,g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(10)=5.設(shè)Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n)
          (Ⅰ)求g(6),g(20)的值;
          (Ⅱ)求S1,S2,S3的值;
          (Ⅲ)求數(shù)列{Sn}的通項(xiàng)公式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案