日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知球O的表面積為20π,點(diǎn)A,B,C為球面上三點(diǎn),若AC⊥BC,且AB=2,則球心O到平面ABC的距離等于
          2
          2
          分析:由球面面積,求出球的半徑,再判斷出△ABC為以C為直角的直角三角形,根據(jù)球心距、截面圓半徑、球半徑構(gòu)成直角三角形,滿足勾股定理,我們易得球心O到平面ABC的距離.
          解答:解:∵球面面積S=20π=4πR2,∴R2=5
          ∵AC⊥BC,且AB=2,
          ∴△ABC為以C為直角的直角三角形
          ∴平面ABC截球得到的截面圓半徑r=
          1
          2
          AB=1
          ∴球心O到平面ABC的距離d=
          R2-r2
          =2
          故答案為:2
          點(diǎn)評:本題考查的知識(shí)點(diǎn)是空間點(diǎn)、線、面之間的距離計(jì)算,其中根據(jù)球心距d,球半徑R,截面圓半徑r,構(gòu)造直角三角形,滿足勾股定理,是與球相關(guān)的距離問題常用方法.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知球O的表面積為4π,A、B、C三點(diǎn)都在球面上,且任意兩點(diǎn)間的球面距離為
          π
          2
          ,則OA與平面ABC所成角的正切值是
          2
          2
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知球O的表面積為8π,A,B,C是球面上的三點(diǎn),點(diǎn)M是AB的中點(diǎn),AB=2,BC=1,∠ABC=
          π
          3
          ,則二面角M=OC-B的大小為
          arctan
          6
          arctan
          6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知球O的表面積為12π.
          (1)求球O的半徑;
          (2)已知正方體ABCD-A1B1C1D1的頂點(diǎn)都在球O的球面上,求這個(gè)球的體積與正方體ABCD-A1B1C1D1的體積之比.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•甘肅一模)(理科)已知球O的表面積為4π,A,B,C三點(diǎn)都在球面上,且A與B、A與C的球面距離均為
          π
          2
          ,|BC|=
          3
          ,則球心O到平面ABC的距離為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知球O的表面積為20π,SC是球O的直徑,A、B兩點(diǎn)在球面上,且AB=BC=2,AC=2
          3
          ,則三棱錐S-AOB的高為(  )

          查看答案和解析>>

          同步練習(xí)冊答案