日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)已知數(shù)列{an}的第1項(xiàng) a1=1,且an+1=( n=1,2,3…)使用歸納法歸納出這個數(shù)列的通項(xiàng)公式.(不需證明)
          (2)用分析法證明:若a>0,則-≥a+-2.
          【答案】分析:(1)由 a1=1,且an+1= 可求得數(shù)列的前若干項(xiàng),根據(jù)每項(xiàng)的結(jié)構(gòu)特征猜想通項(xiàng)公式.
          (2)只需證+2≥a++,只需證(+2)2≥(a++2,
          只需證(a+),即證 a2+≥2,而它顯然是成立.
          解答:解:(1)由 a1=1,且an+1= 可得,a2==,a3==,猜想
          (2)證明:要證-≥a+-2,只需證+2≥a++
          ∵a>0,∴兩邊均大于零,因此只需證(+2)2≥(a++2,
          只需證a2++4+4≥a2++2+2(a+),
          只需證(a+),只需證a2+(a2++2),
          即證a2+≥2,它顯然是成立,∴原不等式成立.
          點(diǎn)評:本題考查歸納推理,以及用分析法證明不等式,尋找使不等式成立的充分條件,是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知數(shù)列{an}的第1項(xiàng) a1=1,且an+1=
          an
          1+an
          ( n=1,2,3…)使用歸納法歸納出這個數(shù)列的通項(xiàng)公式.(不需證明)
          (2)用分析法證明:若a>0,則
          a2+
          1
          a2
          -
          2
          ≥a+
          1
          a
          -2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12,求數(shù)列{an}的通項(xiàng)公式
          (2)已知數(shù)列{an}的通項(xiàng)公式為an=n•2n,求數(shù)列{an}的前n項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,若Sn=
          1
          4
          (an+1)2
          ①求{an}的通項(xiàng)公式;
          ②設(shè)m,k,p∈N*,m+p=2k,求證:
          1
          Sm
          +
          1
          Sp
          2
          Sk

          (2)若{an}是等差數(shù)列,前n項(xiàng)和為Tn,求證:對任意n∈N*,Tn,Tn+1,Tn+2不能構(gòu)成等比數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知數(shù)列{an}中,a1=1,且滿足an+1=3an+1,n∈N*,求數(shù)列{an}的通項(xiàng)公式
          (2)已知數(shù)列{an}中,a1=2,an=
          an-12an-1+1
          (n≥2)
          ,求數(shù)列{an}的通項(xiàng)公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知數(shù)列{an}的前n項(xiàng)和Sn=3n2-2n,求證數(shù)列{an}成等差數(shù)列.
          (2)已知
          1
          a
          ,
          1
          b
          ,
          1
          c
          成等差數(shù)列,求證
          b+c
          a
          ,
          c+a
          b
          ,
          a+b
          c
          也成等差數(shù)列.

          查看答案和解析>>

          同步練習(xí)冊答案