日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù) . 

          (1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

          (2)是否存在整數(shù), ,使得的解集恰好是,若存在,求出, 的值;若不存在,說明理由.

          【答案】12見解析

          【解析】試題分析:(1)根據(jù)二次函數(shù)圖像確定對稱軸一定在區(qū)間外,再根據(jù)左右位置對于單調(diào)性確定函數(shù)值的正負(fù),解不等式可得實(shí)數(shù)的取值范圍;(2)根據(jù)對稱軸與定義區(qū)間位置關(guān)系討論函數(shù)值對應(yīng)關(guān)系,消去m得關(guān)于a,b關(guān)系式,根據(jù)整數(shù)條件確定有限解,最后驗(yàn)證確定滿足條件的解

          試題解析:(1)令,則

          當(dāng),即時(shí), 恒成立,

          所以

          因?yàn)?/span>上是減函數(shù),所以,解得

          所以

          ,解得,

          當(dāng)時(shí), 的圖象對稱軸,且方程的兩根均為正,

          此時(shí)為減函數(shù),所以符合條件.

          當(dāng)時(shí), 的圖象對稱軸,且方程的根一正一負(fù),

          要使單調(diào)遞減,則,解得

          綜上可得,實(shí)數(shù)的取值范圍為

          (2)假設(shè)存在整數(shù)、,使的解集恰好是,則

          ①若函數(shù)上單調(diào)遞增,則

          作差得到,代回得到,即,

          由于、均為整數(shù),

          , , , ,經(jīng)檢驗(yàn)均不滿足要求;

          ②若函數(shù)上單調(diào)遞減,則, ,

          作差得到,代回得到: ,即

          由于、均為整數(shù),

          , , , , ,經(jīng)檢驗(yàn)均不滿足要求;

          ③若函數(shù)上不單調(diào),則 ,且

          作差得到,代回得到,即,由于, 均為整數(shù),

          , , ,經(jīng)檢驗(yàn)均滿足要求;

          綜上:符合要求的整數(shù)、.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在R上的函數(shù)y=f(x)對任意的x、y∈R,滿足條件:f(x+y)=f(x)+f(y)﹣1,且當(dāng)x>0時(shí),f(x)>1.
          (1)求f(0)的值;
          (2)證明:函數(shù)f(x)是R上的單調(diào)增函數(shù);
          (3)解關(guān)于t的不等式f(2t2﹣t)<1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a,b∈M. (Ⅰ)證明:| a+ b|< ;
          (Ⅱ)比較|1﹣4ab|與2|a﹣b|的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是定義在上的奇函數(shù),當(dāng)時(shí),,則不等式的解集為(

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四棱錐中,底面是邊長為1的正方形,側(cè)棱底面,且 是側(cè)棱上的動(dòng)點(diǎn).

          (1)求四棱錐的表面積;

          (2)是否在棱上存在一點(diǎn),使得平面;若存在,指出點(diǎn)的位置,并證明;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正四面體P﹣ABC體積為V,現(xiàn)內(nèi)部取一點(diǎn)S,則 的概率為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),當(dāng)時(shí),恒有當(dāng)時(shí),

          求證: 是奇函數(shù);

          ,試求在區(qū)間上的最值;

          )是否存在,使對于任意恒成立?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在南北方向有一條公路,一半徑為100m的圓形廣場(圓心為O)與此公路一邊所在直線l相切于點(diǎn)A.點(diǎn)P為北半圓。ɑPB)上的一點(diǎn),過P作直線l的垂線,垂足為Q.計(jì)劃在△PAQ內(nèi)(圖中陰影部分)進(jìn)行綠化.設(shè)△PAQ的面積為S(單位:m2).
          (1)設(shè)∠BOP=α(rad),將S表示為α的函數(shù);
          (2)確定點(diǎn)P的位置,使綠化面積最大,并求出最大面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=log2x,g(x)=2log2(2x+a),a∈R
          (1)求函數(shù)f(x)的解析式;
          (2)若對任意x∈[1,4],f(4x)≤g(x),求實(shí)數(shù)a的取值范圍;
          (3)設(shè)a>﹣2,求函數(shù)h(x)=g(x)﹣f(x),x∈[1,2]的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案