日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 數(shù)列{an}是等差數(shù)列,Sn是其前n項(xiàng)和,有且S7<S8,S8=S9>S10,則在下列結(jié)論中錯(cuò)誤的是(  )
          分析:根據(jù)所給的條件判斷出數(shù)列的特點(diǎn):a9=0,d<0,且a1>0,再利用等差數(shù)列的通項(xiàng)的性質(zhì),可判斷S11與S7大小關(guān)系.
          解答:解:∵S7<S8,S8=S9>S10,
          ∴a8>0,a9=0,a10<0
          ∴d<0,且a1>0,
          ∴S8,S9均為Sn的最大項(xiàng),故A、B、D的判斷正確;
          對(duì)于C,S11-S7=a8+a9+a10=3a9=0,∴C不正確
          故選C.
          點(diǎn)評(píng):本題以等差數(shù)列的前n項(xiàng)和為載體,考查等差數(shù)列前n項(xiàng)和的性質(zhì),考查等差數(shù)列的通項(xiàng)的性質(zhì),屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知
          i
          =(1,0),
          jn
          =(cos2
          2
          ,sin
          2
          ),
          Pn
          =(an,sin
          2
          )(n∈N+),數(shù)列{an}
          滿足:a1=1,a2=1,an+2=(i+
          jn
          )•
          Pn

          (I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
          (II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知
          i
          =(1,0),
          jn
          =(cos2
          2
          ,sin
          2
          ),
          Pn
          =(an,sin
          2
          )(n∈N+),數(shù)列{an}
          滿足:a1=1,a2=1,an+2=(i+
          jn
          )•
          Pn

          (I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
          (II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市南開中學(xué)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知滿足:
          (I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
          (II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案