日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知平面QBC與直線PA均垂直于Rt△ABC所在平面,且PA=AB=AC,
          (Ⅰ)求證:PA∥平面QBC;
          (Ⅱ)若PQ⊥平面QBC,求CQ與平面PBC所成角的正弦值.

          (Ⅰ)證明:過點Q作QD⊥BC于點D,
          ∵平面QBC⊥平面ABC,∴QD⊥平面ABC.
          又∵PA⊥平面ABC,
          ∴QD∥PA,
          又∵QD?平面QBC,PA?平面QBC,
          ∴PA∥平面QBC.
          (Ⅱ)∵PQ⊥平面QBC,
          ∴∠PQB=∠PQC=90°,又∵PB=PC,PQ=PQ,
          ∴△PQB≌△PQC,∴BQ=CQ.
          ∴點D是BC的中點,連接AD,則AD⊥BC.
          ∴AD⊥平面QBC,∴PQ∥AD,AD⊥QD.
          ∴四邊形PADQ是矩形.
          設(shè)PA=AB=AC=2a,
          則PQ=AD=a,PD=a.
          又∵BC⊥PA,BC⊥PQ,∴BC⊥平面PADQ,
          從而平面PBC⊥平面PADQ,過Q作QH⊥PD于點H,則QH⊥平面PBC.
          ∴∠QCH是CQ與平面PBC所成的角.
          在Rt△PQD中,PQ•QD=PD•QH,則QH==,CQ=BQ=a.
          ∴sin∠QCH==
          ∴CQ與平面PBC所成角的正弦值為
          分析:(I)過點Q作QD⊥BC于點D,利用面面垂直的性質(zhì)定理可得QD⊥平面ABC.又PA⊥平面ABC,利用線面垂直的性質(zhì)定理可得QD∥PA,再利用線面平行的判定定理即可證明;
          (II)由已知可證明△PQB≌△PQC,得到BQ=CQ.根據(jù)點D是BC的中點,連接AD,則AD⊥BC.利用線面垂直的判定定理可得AD⊥平面QBC,于是PQ∥AD,AD⊥QD.得到四邊形PADQ是矩形.設(shè)AB=AC=2a,則PQ=AD=a,PD=a.又BC⊥PA,BC⊥PQ,可得BC⊥平面PADQ,從而平面PBC⊥平面PADQ,過Q作QH⊥PD于點H,則QH⊥平面PBC.得到∠QCH是CQ與平面PBC所成的角.再利用邊角關(guān)系即可得出.
          點評:熟練掌握空間中的線面、面面垂直的判定與性質(zhì)定理、線面角的定義、矩形的判定與性質(zhì)定理、三角形全等的判定與性質(zhì)定理、等積變形是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•溫州一模)如圖,已知平面QBC與直線PA均垂直于Rt△ABC所在平面,且PA=AB=AC.
          (Ⅰ)求證:PA∥平面QBC;
          (Ⅱ)PQ⊥平面QBC,求二面角Q-PB-A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•溫州一模)如圖,已知平面QBC與直線PA均垂直于Rt△ABC所在平面,且PA=AB=AC,
          (Ⅰ)求證:PA∥平面QBC;
          (Ⅱ)若PQ⊥平面QBC,求CQ與平面PBC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州市高三第一次適應(yīng)性測試理科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本題滿分14分)

          如圖,已知平面QBC與直線PA均垂直于所在平面,且PA=AB=AC.

          (Ⅰ)求證:PA∥平面QBC;

          (Ⅱ)若,求二面角Q-PB-A的余弦值。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年浙江省杭州市重點高中高考命題比賽數(shù)學(xué)參賽試卷20(解析版) 題型:解答題

          如圖,已知平面QBC與直線PA均垂直于Rt△ABC所在平面,且PA=AB=AC.
          (Ⅰ)求證:PA∥平面QBC;
          (Ⅱ)PQ⊥平面QBC,求二面角Q-PB-A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年浙江省溫州市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

          如圖,已知平面QBC與直線PA均垂直于Rt△ABC所在平面,且PA=AB=AC,
          (Ⅰ)求證:PA∥平面QBC;
          (Ⅱ)若PQ⊥平面QBC,求CQ與平面PBC所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案