日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知f(x)是定義在[1,+∞]上的函數(shù),且f(x)= ,則函數(shù)y=2xf(x)﹣3在區(qū)間(1,2015)上零點(diǎn)的個(gè)數(shù)為

          【答案】11
          【解析】解:令函數(shù)y=2xf(x)﹣3=0,得到方程f(x)= ,
          當(dāng)x∈[1,2)時(shí),函數(shù)f(x)先增后減,在x= 時(shí)取得最大值1,
          而y= 在x= 時(shí)也有y=1;
          當(dāng)x∈[2,22)時(shí),f(x)= f( x),在x=3處函數(shù)f(x)取得最大值
          而y= 在x=3時(shí)也有y= ;
          當(dāng)x∈[22 , 23)時(shí),f(x)= f( x),在x=6處函數(shù)f(x)取得最大值 ,
          而y= 在x=6時(shí)也有y= ;
          …,
          當(dāng)x∈[210 , 211)時(shí),f(x)= f( x),在x=1536處函數(shù)f(x)取得最大值 ,
          而y= 在x=1536時(shí)也有y=
          綜合以上分析,將區(qū)間(1,2015)分成11段,每段恰有一個(gè)交點(diǎn),所以共有11個(gè)交點(diǎn),即有11個(gè)零點(diǎn).
          所以答案是:11.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】近年來(lái),“共享單車(chē)”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車(chē)公司“Mobike”計(jì)劃在甲、乙兩座城市共投資120萬(wàn)元,根據(jù)行業(yè)規(guī)定,每個(gè)城市至少要投資40萬(wàn)元,由前期市場(chǎng)調(diào)研可知:甲城市收益P與投入(單位:萬(wàn)元)滿(mǎn)足,乙城市收益Q與投入(單位:萬(wàn)元)滿(mǎn)足,設(shè)甲城市的投入為(單位:萬(wàn)元),兩個(gè)城市的總收益為(單位:萬(wàn)元).

          (1)當(dāng)甲城市投資50萬(wàn)元時(shí),求此時(shí)公司總收益;

          (2)試問(wèn)如何安排甲、乙兩個(gè)城市的投資,才能使總收益最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知A,B,C為銳角△ABC的三個(gè)內(nèi)角,向量 =(2﹣2sinA,cosA+sinA), =(1+sinA,cosA﹣sinA),且
          (1)求A的大小;
          (2)求y=2sin2B+cos( ﹣2B)取最大值時(shí)角B的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f(x)= ,(a>0,b∈R)
          (1)當(dāng)x≠0時(shí),求證:f(x)=f( );
          (2)若函數(shù)y=f(x),x∈[ ,2]的值域?yàn)閇5,6],求f(x);
          (3)在(2)條件下,討論函數(shù)g(x)=f(2x)﹣k(k∈R)的零點(diǎn)個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知f(x)=2x3﹣6x2+m(m為常數(shù)),在[﹣2,2]上有最大值3,那么此函數(shù)在[﹣2,2]上的最小值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是(
          A.(﹣∞,﹣1)∪(0,1)
          B.(﹣1,0)∪(1,+∞)
          C.(﹣∞,﹣1)∪(﹣1,0)
          D.(0,1)∪(1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn , 等比數(shù)列{bn}的公比為q,已知b1=a1 , b2=2,q=d,S10=100.
          (1)求數(shù)列{an},{bn}的通項(xiàng)公式
          (2)當(dāng)d>1時(shí),記cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知λ∈R,函數(shù) g(x)=x2﹣4x+1+4λ,若關(guān)于x的方程f(g(x))=λ有6個(gè)解,則λ的取值范圍為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知等差數(shù)列 中,公差 , ,且 成等比數(shù)列.
          (1)求數(shù)列 的通項(xiàng)公式;
          (2)若 為數(shù)列 的前 項(xiàng)和,且存在 ,使得 成立,求實(shí)數(shù) 的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案