日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          已知l是過正方體ABCD-A1B1C1D1的頂點的平面AB1D1與下底面ABCD所在平面的交線.
          (1)求證:D1B1∥l;
          (2)若AB=a,求l與D1間的距離.

          【答案】分析:(1)先證明由D1B1∥BD證明D1B1∥平面ABCD,再由線面平行的性質定理證明D1B1∥l.
          (2)利用正方體ABCD-A1B1C1D1中線面垂直,作出并證明過點D1與l垂線,在直角三角形中求出.
          解答:(1)證明:在正方體ABCD-A1B1C1D1中,D1B1∥BD,
          ∵BD?平面ABCD,D1B1?平面ABCD
          ∴D1B1∥平面ABCD.
          又∵平面ABCD∩平面AD1B1=l,
          ∴D1B1∥l.

          (2)解:在平面ABCD內,由D作DG⊥l于G,連接D1G,
          在正方體ABCD-A1B1C1D1中,得 D1D⊥平面ABCD,
          ∴D1D⊥l,∵D1D∩DG=D,∴l(xiāng)⊥平面D1DG
          ∴D1G⊥l,即D1G的長即等于點D1與l間的距離.
          ∵l∥D1B1∥BD,∴∠DAG=45°.
          ∴DG=a,在直角三角形D1DG中,
          則有 D1G===a.
          點評:本題考查了平行判定與性質定理的應用,用于線線平行于線面平行的轉化;求距離時考查了線面垂直和線線垂直的相互轉化,利用了線面垂直定義及判定定理.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          精英家教網已知l是過正方體ABCD-A1B1C1D1的頂點的平面AB1D1與下底面ABCD所在平面的交線.
          (1)求證:D1B1∥l;
          (2)若AB=a,求l與D1間的距離.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          已知l是過正方體ABCD-A1B1C1D1的頂點的平面AB1D1與下底面ABCD所在平面的交線.
          (1)求證:D1B1∥l;
          (2)若AB=a,求l與D1間的距離.

          查看答案和解析>>

          同步練習冊答案