日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 動圓D過定點A(0,2),圓心D在拋物線x2=4y上運動,MN為圓D在x軸上截得的弦.
          (1)當圓心D在原點時,過拋物線的焦點F作直線l交圓D于B、C兩點,求△ABC的最大面積;
          (2)當圓心D運動時,記|AM|=m,|AN|=n,求數(shù)學公式的最大值.

          解:(1)設(shè)直線BC為y=kx+1,代入x2+y2=4得,(1+k2)x2+2kx-3=0,

          =
          =
          =
          =
          當且僅當k=0時,△ABC的最大面積為
          (2)設(shè)圓心,則圓為
          當y=0時,x=a±2,
          ∴|MN|=4,
          令∠MAN=θ,
          由余弦定理,得16=m2+n2-2mncosθ,
          又由
          =
          ,

          =2,
          時取得最大值.
          分析:(1)設(shè)直線BC為y=kx+1,代入x2+y2=4得,(1+k2)x2+2kx-3=0,=.由此知當且僅當k=0時,△ABC的最大面積為
          (2)設(shè)圓心,則圓為.當y=0時,x=a±2,|MN|=4,令∠MAN=θ,由余弦定理,得16=m2+n2-2mncosθ,由此能求出的最大值.
          點評:本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與圓的相關(guān)知識,解題時要注意合理地進行等價轉(zhuǎn)化.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          動圓D過定點A(0,2),圓心D在拋物線x2=4y上運動,MN為圓D在x軸上截得的弦.
          (1)當圓心D在原點時,過拋物線的焦點F作直線l交圓D于B、C兩點,求△ABC的最大面積;
          (2)當圓心D運動時,記|AM|=m,|AN|=n,求
          m
          n
          +
          n
          m
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          一動圓的圓心在拋物線y2=8x上,且動圓恒與直線x+2=0相切,則動圓必過定點(    )

          A.(4,0)              B.(2,0)                   C.(0,2)                D.(0,-2)

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          動圓D過定點A(0,2),圓心D在拋物線x2=4y上運動,MN為圓D在x軸上截得的弦.
          (1)當圓心D在原點時,過拋物線的焦點F作直線l交圓D于B、C兩點,求△ABC的最大面積;
          (2)當圓心D運動時,記|AM|=m,|AN|=n,求
          m
          n
          +
          n
          m
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2008-2009學年重慶十一中高二(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

          動圓D過定點A(0,2),圓心D在拋物線x2=4y上運動,MN為圓D在x軸上截得的弦.
          (1)當圓心D在原點時,過拋物線的焦點F作直線l交圓D于B、C兩點,求△ABC的最大面積;
          (2)當圓心D運動時,記|AM|=m,|AN|=n,求的最大值.

          查看答案和解析>>

          同步練習冊答案