【題目】如圖,在四棱錐中,
,
,
,
.
(1)求證:;
(2)當(dāng)幾何體的體積等于
時,求四棱錐.
的側(cè)面積.
【答案】(1)見解析;(2).
【解析】
試題分析:(1)取的中點
,連結(jié)
,由直角梯形
性質(zhì)可得
,又
平面
;(2)由
可得
,根據(jù)(1)可得三角形
是直角三角形,根據(jù)勾股定理可得其他三個側(cè)面也是直角三角形,由三角形面積公式可得 四棱錐.
的側(cè)面積.
試題解析:(1)取的中點
,連結(jié)
,
則直角梯形中,
,
即:
平面
,
平面
又
(2)
,
,
又
四棱錐
的側(cè)面積為
.
【方法點晴】本題主要考查線面垂直、棱錐的側(cè)面積及“等積變換”的應(yīng)用,屬于難題.證明直線和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質(zhì)
;(4)利用面面垂直的性質(zhì),當(dāng)兩個平面垂直時,在一個平面內(nèi)垂直于交線的直線垂直于另一個平面.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】基于移動互聯(lián)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風(fēng)靡全國,帶給人們新的出行體驗.某共享單車運營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個月內(nèi)的市場占有率進行了統(tǒng)計,結(jié)果如下表:
月份 | 2017.8 | 2017.9 | 2017.10 | 2017.11 | 2017.12 | 2018.1 |
月份代碼x | 1 | 2 | 3 | 4 | 5 | 6 |
市 場占有率y(%) | 11 | 13 | 16 | 15 | 20 | 21 |
(1)請在給出的坐標(biāo)紙中作出散點圖;
(2)求y關(guān)于x的線性回歸方程,并預(yù)測該公司2018年2月份的市場占有率;
參考公式:回歸直線方程為 其中:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場進行購物摸獎活動,規(guī)則是:在一個封閉的紙箱中裝有標(biāo)號分別為1,2,3,4,5,6的六個小球,每次摸獎需要同時取出兩個球,每位顧客最多有兩次摸獎機會,并規(guī)定:若第一次取出的兩球號碼連號,則中獎,摸獎結(jié)束;若第一次未中獎,則將這兩個小球放回后進行第二次摸球,若與第一次取出的兩個小球號碼相同,則為中獎,按照這樣的規(guī)則摸獎,中獎的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列的首項
,前n項和
滿足
.
(1)求數(shù)列的通項公式;
(2)若數(shù)列是公比為4的等比數(shù)列,且
,
,
也是等比數(shù)列,若數(shù)列
單調(diào)遞增,求實數(shù)
的取值范圍;
(3)若數(shù)列、
都是等比數(shù)列,且滿足
,試證明: 數(shù)列
中只存在三項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的個數(shù)①“,
”的否定是“
,
”;②用相關(guān)指數(shù)
可以刻畫回歸的擬合效果,
值越小說明模型的擬合效果越好;③命題“若
,則
”的逆命題為真命題;④若
的解集為
,則
.
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國是世界互聯(lián)網(wǎng)服務(wù)應(yīng)用最好的國家,一部智能手機就可以跑遍國內(nèi)所有地方,中國市場的移動支付普及率高得驚人.一家大型超市委托某高中數(shù)學(xué)興趣小組調(diào)查該超市的顧客使用移動支付的情況,調(diào)查人員從年齡在內(nèi)的顧客中,隨機抽取了
人,調(diào)查他們是否使用移動支付,結(jié)果如下表:
年齡 | ||||||||
使用 | ||||||||
不使用 |
(1)為更進一步推動移動支付,超市準(zhǔn)備對使用移動支付的每位顧客贈送個環(huán)保購物袋,若某日該超市預(yù)計有
人購物,試根據(jù)上述數(shù)據(jù)估計,該超市當(dāng)天應(yīng)準(zhǔn)備多少個環(huán)保購物袋?
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為使用移動支付與年齡有關(guān)?
年齡 | 年齡 | 小計 | |
使用移動支付 | |||
不使用移動支付 | |||
合計 |
附:下面的臨界值表供參考:
參考數(shù)據(jù):
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三個頂點坐標(biāo)分別為:
,直線
經(jīng)過點
.
(1)求外接圓
的方程;
(2)若直線與
相切,求直線
的方程;
(3)若直線與
相交于
兩點,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面
平面
,
,
是等邊三角形,已知
,
.
(1)設(shè)是
上的一點,證明:平面
平面
;
(2)求四棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com