【題目】如圖,在四棱錐中,四邊形
是直角梯形,
,
,
底面
,
,
,
,
是
的中點(diǎn).
(1)求證:;
(2)若二面角的余弦值為
,求直線
與平面
所成角的正弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)推導(dǎo)出平面
,進(jìn)而可得出
;
(2)利用二面角的定義得出,可計(jì)算出
,然后以點(diǎn)
為坐標(biāo)原點(diǎn),
、
、
所在直線分別為
、
、
軸建立空間直角坐標(biāo)系,利用空間向量法計(jì)算出直線
與平面
所成角的正弦值.
(1)在梯形中,
,
,則
,
,
且,則
,在
中,
,
,
由余弦定理得,
,則
,
平面
,
平面
,
,
,
平面
,
平面
,
;
(2)由(1)知,,
,所以,二面角
的平面角為
,
平面
,
平面
,
,
為
的中點(diǎn),
,
,
則,即
,解得
,
以點(diǎn)為坐標(biāo)原點(diǎn),
、
、
所在直線分別為
、
、
軸建立空間直角坐標(biāo)系,
則點(diǎn)、
、
、
,
則,
,
,
設(shè)平面的法向量為
,
由,令
,則
,
,可得
,
設(shè)直線與平面
所成角為
,則
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,過(guò)橢圓
的焦點(diǎn)且垂直于
軸的直線被橢圓
截得的弦長(zhǎng)為
.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)均在橢圓
上,點(diǎn)
在拋物線
上,若
的重心為坐標(biāo)原點(diǎn)
,且
的面積為
,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】BMI指數(shù)(身體質(zhì)量指數(shù),英文為BodyMassIndex,簡(jiǎn)稱BMI)是衡量人體胖瘦程度的一個(gè)標(biāo)準(zhǔn),BMI=體重(kg)/身高(m)的平方.根據(jù)中國(guó)肥胖問(wèn)題工作組標(biāo)準(zhǔn),當(dāng)BMI≥28時(shí)為肥胖.某地區(qū)隨機(jī)調(diào)查了1200名35歲以上成人的身體健康狀況,其中有200名高血壓患者,被調(diào)查者的頻率分布直方圖如下:
(1)求被調(diào)查者中肥胖人群的BMI平均值;
(2)填寫下面列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為35歲以上成人患高血壓與肥胖有關(guān).
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
肥胖 | 不肥胖 | 合計(jì) | |
高血壓 | |||
非高血壓 | |||
合計(jì) |
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃投資開(kāi)發(fā)一種新能源產(chǎn)品,預(yù)計(jì)能獲得10萬(wàn)元1000萬(wàn)元的收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)開(kāi)發(fā)科研小組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金
(單位:萬(wàn)元)隨收益
(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金總數(shù)不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金總數(shù)不超過(guò)收益的
.
(Ⅰ)若建立獎(jiǎng)勵(lì)方案函數(shù)模型,試確定這個(gè)函數(shù)的定義域、值域和
的范圍;
(Ⅱ)現(xiàn)有兩個(gè)獎(jiǎng)勵(lì)函數(shù)模型:①;②
.試分析這兩個(gè)函數(shù)模型是否符合公司的要求?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)=,
(1)求f(x)的最小值;
(2)對(duì)任意,
都有恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明:對(duì)一切,都有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
的離心率為
.點(diǎn)
在橢圓
上,點(diǎn)
,
,
的面積為
,
為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線交橢圓
于
,
兩點(diǎn),直線
的斜率為
,直線
的斜率為
,且
,證明:
的面積是定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為1,線段
上有兩個(gè)動(dòng)點(diǎn)
,且
,現(xiàn)有如下四個(gè)結(jié)論:
;
平面
;
三棱錐
的體積為定值;
異面直線
所成的角為定值,
其中正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線
的準(zhǔn)線為
,其焦點(diǎn)為F,點(diǎn)B是拋物線C上橫坐標(biāo)為
的一點(diǎn),若點(diǎn)B到
的距離等于
.
(1)求拋物線C的方程,
(2)設(shè)A是拋物線C上異于頂點(diǎn)的一點(diǎn),直線AO交直線于點(diǎn)M,拋物線C在點(diǎn)A處的切線m交直線
于點(diǎn)N,求證:以點(diǎn)N為圓心,以
為半徑的圓經(jīng)過(guò)
軸上的兩個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)半徑為2的鋼球內(nèi)放置一個(gè)用來(lái)盛特殊液體的正四棱柱容器,要使該容器所盛液體盡可能多,則該容器的高應(yīng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com