日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù)是實(shí)數(shù)集R上的奇函數(shù),當(dāng)時(shí), .

          (1)的值和函數(shù)的表達(dá)式;

          (2)求證:方程在區(qū)間上有唯一解.

          【答案】(1)f(x);(2)見解析.

          【解析】試題分析:(1)根據(jù)函數(shù)的奇偶性,利用即可解答;根據(jù)奇函數(shù)的性質(zhì)求出的解析式,特別注意當(dāng)時(shí), ;

          (2)因?yàn)?/span>log22,所以方程在區(qū)間上有根.然后根據(jù)函數(shù)的單調(diào)性證明解的唯一性即可.

          試題解析:

          (1)函數(shù)f(x)是實(shí)數(shù)集R上的奇函數(shù).

          所以f(-1)=-f(1).

          因?yàn)楫?dāng)x>0時(shí),f(x)=log2xx-3,所以f(1)=log21+1-3=-2.

          所以f(-1)=-f(1)=2.

          當(dāng)x=0時(shí),f(0)=f(-0)=-f(0),解得f(0)=0,

          當(dāng)x<0時(shí),-x>0,所以f(-x)=log2(-x)+(-x)-3=log2(-x)-x-3.

          所以-f(x)=log2(-x)-x-3,從而f(x)=-log2(-x)+x+3.

          所以f(x)

          (2)因?yàn)?/span>f(2)=log22+2-3=0,所以方程f(x)=0在區(qū)間(0,+∞)上有解x=2.

          易知在區(qū)間(0,∞)上為增函數(shù),

          由零點(diǎn)存在性定理可知,方程f(x)=0在區(qū)間(0,+∞)上有唯一解.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)=x3+bx2+cx+d圖象如圖,則函數(shù) 的單調(diào)遞減區(qū)間為(

          A.(﹣∞,﹣2)
          B.[3,+∞)
          C.[﹣2,3]
          D.[

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x)=2f(x+2),當(dāng)x∈[0,2)時(shí),f(x)=﹣2x2+4x.設(shè)f(x)在[2n﹣2,2n)上的最大值為an(n∈N*),且{an}的前n項(xiàng)和為Sn , 則Sn=(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)從高三男生中隨機(jī)抽取名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如下所示

          組號(hào)

          分組

          頻數(shù)

          頻率

          1

          5

          0.050

          2

          0.350

          3

          30

          4

          20

          0.200

          5

          10

          0.100

          合計(jì)

          1.00

          (Ⅰ)求出頻率分布表中①和②位置上相應(yīng)的數(shù)據(jù),并完成下列頻率分布直方圖;

          (Ⅱ)為了能對(duì)學(xué)生的體能做進(jìn)一步了解,該校決定在第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)行不同項(xiàng)目的體能測(cè)試,若在這6名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行引體向上測(cè)試,則第4組中至少有一名學(xué)生被抽中的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M: 及其上一點(diǎn)A2,4

          1)設(shè)圓Nx軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;

          2)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;

          3)設(shè)點(diǎn)Tt,o)滿足:存在圓M上的兩點(diǎn)PQ,使得,求實(shí)數(shù)t的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)a,b∈R,ab≠0,給出下面四個(gè)命題:①a2+b2≥﹣2ab;② ≥2;③若a<b,則ac2<bc2;④若 .則a>b;其中真命題有(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線M: =1(a>0,b>0)的上焦點(diǎn)為F,上頂點(diǎn)為A,B為虛軸的端點(diǎn),離心率e= ,且SABF=1﹣ .拋物線N的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F.
          (1)求雙曲線M和拋物線N的方程;
          (2)設(shè)動(dòng)直線l與拋物線N相切于點(diǎn)P,與拋物線的準(zhǔn)線相交于點(diǎn)Q,則以PQ為直徑的圓是否恒過y軸上的一個(gè)定點(diǎn)?如果經(jīng)過,試求出該點(diǎn)的坐標(biāo),如果不經(jīng)過,試說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若a>0,b>0,且 + =
          (1)求a3+b3的最小值;
          (2)是否存在a,b,使得2a+3b=6?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知等差數(shù)列和等比數(shù)列滿足, ,

          1的通項(xiàng)公式;

          2求和:

          【答案】1;(2

          【解析】試題分析:(1)根據(jù)等差數(shù)列, 列出關(guān)于首項(xiàng)、公差的方程組,解方程組可得的值,從而可得數(shù)列的通項(xiàng)公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項(xiàng) ,公比 的方程組,解得的值,求出數(shù)列的通項(xiàng)公式,然后利用等比數(shù)列求和公式求解即可.

          試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因?yàn)?/span>a2+a4=10,所以2a1+4d=10.解得d=2.

          所以an=2n1.

          (2)設(shè)等比數(shù)列的公比為q. 因?yàn)?/span>b2b4=a5,所以b1qb1q3=9.

          解得q2=3.所以.

          從而.

          型】解答
          結(jié)束】
          18

          【題目】已知命題:實(shí)數(shù)滿足,其中;命題:方程表示雙曲線.

          (1)若,且為真,求實(shí)數(shù)的取值范圍;

          (2)若的充分不必要條件,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案