如圖,動(dòng)點(diǎn)與兩定點(diǎn)
、
構(gòu)成
,且
,設(shè)動(dòng)點(diǎn)
的軌跡為
.
(1)求軌跡的方程;
(2)設(shè)直線與
軸相交于點(diǎn)
,與軌跡
相交于點(diǎn)
,且
,求
的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓,過(guò)點(diǎn)
且離心率為
.
(1)求橢圓的方程;
(2)已知是橢圓
的左右頂點(diǎn),動(dòng)點(diǎn)M滿(mǎn)足
,連接AM交橢圓于點(diǎn)P,在x軸上是否存在異于A、B的定點(diǎn)Q,使得直線BP和直線MQ垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的中心和拋物線
的頂點(diǎn)均為原點(diǎn)
,
、
的焦點(diǎn)均在
軸上,過(guò)
的焦點(diǎn)F作直線
,與
交于A、B兩點(diǎn),在
、
上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
(1)求,
的標(biāo)準(zhǔn)方程;
(2)若與
交于C、D兩點(diǎn),
為
的左焦點(diǎn),求
的最小值;
(3)點(diǎn)是
上的兩點(diǎn),且
,求證:
為定值;反之,當(dāng)
為此定值時(shí),
是否成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓
交于
、
兩點(diǎn),試問(wèn),是否存在
軸上的點(diǎn)
,使得對(duì)任意的
,
為定值,若存在,求出
點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè):
的準(zhǔn)線與
軸交于點(diǎn)
,焦點(diǎn)為
;橢圓
以
為焦點(diǎn),離心率
.設(shè)
是
的一個(gè)交點(diǎn).
(1)當(dāng)時(shí),求橢圓
的方程.
(2)在(1)的條件下,直線過(guò)
的右焦點(diǎn)
,與
交于
兩點(diǎn),且
等于
的周長(zhǎng),求
的方程.
(3)求所有正實(shí)數(shù),使得
的邊長(zhǎng)是連續(xù)正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:+
=1
的離心率為
,左焦點(diǎn)為F(-1,0),
(1)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線L與橢圓C交于M,N兩點(diǎn),若,求直線L的方程;
(2)橢圓C上是否存在三點(diǎn)P,E,G,使得S△OPE=S△OPG=S△OEG=?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓c:(a>b>0)的離心率為
,過(guò)其右焦點(diǎn)F與長(zhǎng)軸垂直的弦長(zhǎng)為1,
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點(diǎn)分別為A,B,點(diǎn)P是直線x=1上的動(dòng)點(diǎn),直線PA與橢圓的另一個(gè)交點(diǎn)為M,直線PB與橢圓的另一個(gè)交點(diǎn)為N,求證:直線MN經(jīng)過(guò)一定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,圓與直線
相切于點(diǎn)
,與
正半軸交于點(diǎn)
,與直線
在第一象限的交點(diǎn)為
.點(diǎn)
為圓
上任一點(diǎn),且滿(mǎn)足
,動(dòng)點(diǎn)
的軌跡記為曲線
.
(1)求圓的方程及曲線
的方程;
(2)若兩條直線和
分別交曲線
于點(diǎn)
、
和
、
,求四邊形
面積的最大值,并求此時(shí)的
的值.
(3)證明:曲線為橢圓,并求橢圓
的焦點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013•浙江)如圖,點(diǎn)P(0,﹣1)是橢圓C1:+
=1(a>b>0)的一個(gè)頂點(diǎn),C1的長(zhǎng)軸是圓C2:x2+y2=4的直徑,l1,l2是過(guò)點(diǎn)P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A、B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時(shí)直線l1的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com