日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示, 矩形所在的平面, 分別是的中點(diǎn).

          (1)求證: 平面;

          (2)求證: .

          (3)當(dāng)滿足什么條件時(shí),能使平面成立?并證明你的結(jié)論.

          【答案】(1)見解析;(2)見解析;(3)當(dāng)滿足時(shí),能使平面成立.證明見解析。

          【解析】試題分析:(1)的中點(diǎn),連結(jié),證明四邊形是平行四邊形,可得,利用線面平行的判定即可得出結(jié)論;(2)由線面垂直得,由矩形性質(zhì)得由線面垂直的判定定理可得平面,由此能證明;(3)當(dāng)滿足時(shí),能使平面成立,可利用等腰三角形的性質(zhì)以及線面垂直的判定定理證明.

          試題解析:( )證明:取的中點(diǎn),連接

          , 分別是 中點(diǎn),

          ,

          又∵, 中點(diǎn),

          ,

          ,

          ∴四邊形是平行四邊形,

          平面, 平面

          平面

          平面,

          ,

          平面,

          又∵

          )當(dāng)滿足時(shí),能使平面成立,

          現(xiàn)證明如下:

          , 中點(diǎn),

          ,

          由(可知,

          平面

          故當(dāng)滿足時(shí),能使平面成立.

          【方法點(diǎn)晴】本題主要考查線面平行的判定定理、直線和平面垂直的性質(zhì)定理與判定定理,屬于難題. 證明線面平行的常用方法:①利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的最小正周期是 ,最小值是﹣2,且圖象經(jīng)過點(diǎn)( ,0),則f(0)=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,為了測量正在海面勻速行駛的某船的速度,在海岸上選取距離1千米的兩個(gè)觀察

          點(diǎn)C、D,在某天10:00觀察到該船在A處,此時(shí)測得∠ADC=30°,2分鐘后該船行駛至B處,此時(shí)測得∠ACB=60°,∠BCD=45°,∠ADB=60°,

          求該船航行的速度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面四邊形ABCD是直角梯形,其中AB⊥AD,AB=BC=1且AD= AA1=2.

          (1)求證:直線C1D⊥平面ACD1;
          (2)試求三棱錐A1﹣ACD1的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知0<α<π,tanα=﹣2.
          (1)求sin(α+ )的值;
          (2)求 的值;
          (3)2sin2α﹣sinαcosα+cos2α

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng)時(shí),求的單調(diào)區(qū)間;

          (2)設(shè)是曲線圖象上的兩個(gè)相異的點(diǎn),若直線的斜率恒成立,求實(shí)數(shù)的取值范圍;

          (3)設(shè)函數(shù)有兩個(gè)極值點(diǎn),若恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=Asin(wx+φ)(x∈R,w>0,0<φ< )的部分圖象如圖所示.

          (1)求函數(shù)f(x)的解析式;
          (2)求函數(shù)g(x)=f(x﹣ )﹣f(x+ )的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

          1)求曲線的普通方程和直線的傾斜角;

          2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)為實(shí)數(shù), 為自然對數(shù)的底數(shù)),曲線處的切線與直線平行.

          (1)求實(shí)數(shù)的值,并判斷函數(shù)在區(qū)間內(nèi)的零點(diǎn)個(gè)數(shù);

          (2)證明:當(dāng)時(shí), .

          查看答案和解析>>

          同步練習(xí)冊答案