日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知曲線C1:x2+y2-2x=0和曲線C2:y=xcosθ-sinθ(θ為銳角),則C1與C2的位置關(guān)系為(  )
          A.相離B.相切
          C.相交D.以上情況均有可能
          把圓的方程化為標準方程得:(x-1)2+y2=1,
          所以圓心坐標為(1,0),圓的半徑r=1,又θ為銳角,
          則圓心到直線y=xcosθ-sinθ的距離d=
          |cosθ-sinθ|
          1+cos2θ
          <1=r,
          所以C1與C2的位置關(guān)系為相交.
          故選C
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知曲線C1:x2+y2-2x=0和曲線C2:y=xcosθ-sinθ(θ為銳角),則C1與C2的位置關(guān)系為(  )
          A、相離B、相切C、相交D、以上情況均有可能

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知曲線C1:x2+y2+2kx+(4k+10)y+10k+20=0 (k≠-1),當k取不同值時,曲線C表示不同的圓,且這些圓的圓心共線,則這條直線的方程是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•開封一模)在平面直角坐標系xOy中,已知曲線C1:x2+y2=1,以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(2cosθ-sinθ)=6.
          (1)將曲線C1上的所有點的橫坐標、縱坐標分別伸長為原來的
          3
          、2倍后得到曲線C2,試寫出直線l的直角坐標方程和曲線C2的參數(shù)方程;
          (2)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•綿陽二模)已知曲線C1=:x2+y2-2
          3
          x+2y=0和曲線C2
          x=2cosθ
          y=2+2sinθ
          (θ為參數(shù))關(guān)于直線l1.對稱,直線l2過點(
          3
          ,-1)且與l1的夾角為60°,則直線l2的方程為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知曲線C1:x2+y2=1(|x|<1),C2:x2=8y+1(|x|≥1),動直線l與C1相切,與C2相交于A,B兩點,曲線C2在A,B處的切線相交于點M.
          (1)當MA⊥MB時,求直線l的方程;
          (2)試問在y軸上是否存在兩個定點T1,T2,當直線MT1,MT2斜率存在時,兩直線的斜率之積恒為定值?若存在,求出滿足的T1,T2點坐標;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案