日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖4,四邊形為正方形,平面,于點(diǎn),交于點(diǎn).

          (1)證明:平面
          (2)求二面角的余弦值.

          (1)詳見(jiàn)解析;(2).

          解析試題分析:(1)由平面,得到,再由四邊形為正方形得到,從而證明平面,從而得到,再結(jié)合,即以及直線與平面垂直的判定定理證明平面;(2)先證明、、三條直線兩兩垂直,然后以點(diǎn)為坐標(biāo)原點(diǎn), 、所在直線分別為軸、軸、軸建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值.
          試題解析:(1)平面,
          ,又,
          平面,
          ,又,
          平面,即平面
          (2)設(shè),則中,,又,
          ,,由(1)知,
          ,,
          ,又,
          ,,同理,
          如圖所示,以為原點(diǎn),建立空間直角坐標(biāo)系,則,
          ,,,,

          設(shè)是平面的法向量,則,又,
          所以,令,得,,
          由(1)知平面的一個(gè)法向量,
          設(shè)二面角的平面角為,可知為銳角,
          ,即所求.
          【考點(diǎn)

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=.

          (1)若M為PA中點(diǎn),求證:AC∥平面MDE;
          (2)求直線PA與平面PBC所成角的正弦值;
          (3)在線段PC上是否存在一點(diǎn)Q(除去端點(diǎn)),使得平面QAD與平面PBC所成銳二面角的大小為?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,已知四邊形ABCD 是矩形,PA⊥平面ABCD,M, N分別是AB, PC的中點(diǎn).
          (1)求證:MN∥平面PAD;
          (2)求證:MN⊥DC;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
          (1)求證:PC⊥BC;
          (2)求點(diǎn)A到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (滿分14分)如圖在三棱錐中,分別為棱的中點(diǎn),已知,

          求證(1)直線平面;
          (2)平面平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,已知在空間四邊形ABCD中,E,F(xiàn)分別是AB,AD的中點(diǎn),G,H分別是BC,CD上的點(diǎn),且=2.求證:直線EG,F(xiàn)H,AC相交于一點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (2011•湖北)如圖,已知正三棱柱ABC=A1B1C1的各棱長(zhǎng)都是4,E是BC的中點(diǎn),動(dòng)點(diǎn)F在側(cè)棱CC1上,且不與點(diǎn)C重合.
          (1)當(dāng)CF=1時(shí),求證:EF⊥A1C;
          (2)設(shè)二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

          矩形與矩形所在的平面互相垂直,將沿翻折,翻折后的點(diǎn)E恰與BC上的點(diǎn)P重合.設(shè),則當(dāng)       時(shí),有最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知空間四邊形ABCD中,AB=CD=3,E、F分別是BC、AD上的點(diǎn),并且BE∶EC=AF∶FD=1∶2,EF=,求AB和CD所成角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案