日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在某建筑工地上有一個吊臂長DF=24m的吊車,吊車底座FG高1.m.現(xiàn)準(zhǔn)備把一個底半徑為3m、高2m的圓柱形工件吊起平放到15m高的橋墩上.(注:當(dāng)物件與吊臂接觸后,鋼索CD長可通過頂點(diǎn)D處的滑輪自動調(diào)節(jié)并保持物件始終與吊臂接觸,且與工件的中心在一條垂直線上.)
          (Ⅰ)記工件能被吊起的最大高度為y(m),請選取適當(dāng)?shù)淖兞繉表示成該變量的函數(shù);
          (Ⅱ)判斷工件能否安全被吊到橋墩上,并說明理由.(參考數(shù)據(jù):
          3
          =1.732)
          分析:(I)取吊臂的張角∠AFD=θ為變量,由圖可知,y=AB+1.1=AD-BC-CD+1.1=DFsiθ-2-CEtanθ+1.1=24sinθ-3tanθ-0.9=24sinθ-3tanθ-0.9(0<θ<
          π
          2

          (Ⅱ)利用導(dǎo)數(shù)求出y的最大值,與15比較,作出判斷.
          解答:解:(I)取吊臂的張角∠AFD=θ為變量,吊車能把工件吊起的最大高度y取決于θ.
          由圖可知,y=AB+1.1=AD-BC-CD+1.1=DFsiθ-2-CEtanθ+1.1=24sinθ-3tanθ-0.9(0<θ<
          π
          2
          ).…(4分)
          (II)吊車不能把圓柱形工件吊起平放到15m高的橋墩上.…(5分)
          由(I)知,y′=24cosθ-
          3
          cos2θ

          令,y′=0,解得cosθ=
          1
          2
          ,∴θ=
          π
          3
          .…(8分)
          當(dāng)θ∈(0,
          π
          3
          )
          時,
          1
          2
          cosθ<1,此時,y′=24cosθ-
          3
          cos2θ
          =
          24cos3θ-3
          cos2θ
          >0;
          當(dāng)θ∈(
          π
          3
          ,
          π
          2
          )
          時,0<cosθ<
          1
          2
          ,此時y′=24cosθ-
          3
          cos2θ
          =
          24cos3θ-3
          cos2θ
          <0;.
          故當(dāng),∴θ=
          π
          3
          時,y有最大值,且最大值為y=9
          3
          -0.9=14.688<15
          .…(11分)
          ∴吊車不能把圓柱形工件吊起平放到15m高的橋墩上.…(12分)
          點(diǎn)評:本題主要考查解三角形的實(shí)際應(yīng)用.當(dāng)涉及最值問題時,可借助函數(shù)的單調(diào)性來解決.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖1,某學(xué)校田徑場上有一旗桿OP,為了測量它的高度,在地面上選一基線AB,設(shè)其長度為d,在A點(diǎn)處測得P點(diǎn)的仰角為α,在B點(diǎn)處測得P點(diǎn)的仰角為β.
          (1)若AB=20,α=30°,β=45°,且∠AOB=30°,求旗桿的高度h;
          (2)經(jīng)分析若干測得的數(shù)據(jù)后,發(fā)現(xiàn)將基線AB調(diào)整到線段AO上(如圖2),α與β之差盡量大時,可以提高測量精確度,設(shè)調(diào)整后AB的距離為d,tanβ=
          4d
          ,旗桿的實(shí)際高度為25,試問d為何值時,β-α最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知問題:上海迪斯尼工程某 施工工地上有一堵墻,工程隊(duì)欲將長為4a(a>0)的建筑護(hù)欄(厚度不計(jì))借助這堵墻圍成矩形的施工區(qū)域(如圖1),求所得區(qū)域的最大面積.解決這一問題的一種方法是:作出護(hù)欄關(guān)于墻面的軸對稱圖形(如圖2),則原問題轉(zhuǎn)化為“已知矩形周長為8a,求面積的最大值”從而輕松獲解.參考這種借助對稱圖形解決問題的方法,對于下列情形:已知兩堵墻互相垂直圍成“L”形,工程隊(duì)將長為4a(a>0)的建筑護(hù)欄借助墻角圍成四邊形的施工區(qū)域(如圖3),可求得所圍區(qū)域的最大面積為
          2(
          2
          +1)a2
          2(
          2
          +1)a2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖1,某學(xué)校田徑場上有一旗桿OP,為了測量它的高度,在地面上選一基線AB,設(shè)其長度為d,在A點(diǎn)處測得P點(diǎn)的仰角為α,在B點(diǎn)處測得P點(diǎn)的仰角為β.
          (1)若AB=20,α=30°,β=45°,且∠AOB=30°,求旗桿的高度h;
          (2)經(jīng)分析若干測得的數(shù)據(jù)后,發(fā)現(xiàn)將基線AB調(diào)整到線段AO上(如圖2),α與β之差盡量大時,可以提高測量精確度,設(shè)調(diào)整后AB的距離為d,tanβ=數(shù)學(xué)公式,旗桿的實(shí)際高度為25,試問d為何值時,β-α最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省常德市芷蘭實(shí)驗(yàn)學(xué)校高三(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖1,某學(xué)校田徑場上有一旗桿OP,為了測量它的高度,在地面上選一基線AB,設(shè)其長度為d,在A點(diǎn)處測得P點(diǎn)的仰角為α,在B點(diǎn)處測得P點(diǎn)的仰角為β.
          (1)若AB=20,α=30°,β=45°,且∠AOB=30°,求旗桿的高度h;
          (2)經(jīng)分析若干測得的數(shù)據(jù)后,發(fā)現(xiàn)將基線AB調(diào)整到線段AO上(如圖2),α與β之差盡量大時,可以提高測量精確度,設(shè)調(diào)整后AB的距離為d,tanβ=,旗桿的實(shí)際高度為25,試問d為何值時,β-α最大?

          查看答案和解析>>

          同步練習(xí)冊答案