日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          a3
          x3+bx2+4cx
          是奇函數(shù),函數(shù)f(x)的圖象在點(1,f(1))處切線的斜率為-6,且當x=2時,函數(shù)f(x)有極值.
          (1)求b的值;
          (2)求f(x)的解析式;
          (3)求f(x)的單調(diào)區(qū)間.
          分析:(1)由函數(shù)f(x)是奇函數(shù),得出f(-x)=-f(x),從而求出b值;
          (2)由函數(shù)f(x)在x=2處取得極值,且在x=1處的切線的斜率為-6,求導,可得±1是f′(x)=0的兩根,且f′(0)=-6,解方程組即可求得,a,c的值,從而求得f(x)的解析式;
          (3)把(2)確定的解析式,令導函數(shù)等于0求出x的值,根據(jù)x的值分區(qū)間討論導函數(shù)的正負,進而得到函數(shù)的單調(diào)區(qū)間.
          解答:解:(1)由函數(shù)f(x)是奇函數(shù),∴f(-x)=-f(x),∴b=0
          (2)由f(x)=
          a
          3
          x3+4cx
          ,有f'(x)=ax2+4c且f'(1)=-6,f'(2)=0
          a+4c=-6
          4a+4c=0
          解得  
          a=2
          c=-2

          f(x)=
          2
          3
          x3-8x

          (3)∵f(x)=
          2
          3
          x3-8x

          ∴f'(x)=2x2-8=2(x+2)(x-2)
          令f'(x)>0得x<-2或x>2,令f'(x)<0得-2<x<2
          ∴函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-2],[2,+∞);單調(diào)減區(qū)間為[-2,2]
          點評:此題主要考查學生會利用導數(shù)求曲線上過某點切線方程的斜率,會利用導函數(shù)的正負判斷函數(shù)的單調(diào)性,是一道中檔題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=a-
          12x+1

          (1)求證:不論a為何實數(shù)f(x)總是為增函數(shù);
          (2)確定a的值,使f(x)為奇函數(shù);
          (3)當f(x)為奇函數(shù)時,求f(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)
          a-x  ,x≤0
          1  ,0<x≤3
          (x-5)2-a,x>3
          (a>0且a≠1)圖象經(jīng)過點Q(8,6).
          (1)求a的值,并在直線坐標系中畫出函數(shù)f(x)的大致圖象;
          (2)求函數(shù)f(t)-9的零點;
          (3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=a-
          1
          2x+1
          ,若f(x)為奇函數(shù),則a=( 。
          A、
          1
          2
          B、2
          C、
          1
          3
          D、3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          a(x-1)x2
          ,其中a>0.
          (I)求函數(shù)f(x)的單調(diào)區(qū)間;
          (II)若直線x-y-1=0是曲線y=f(x)的切線,求實數(shù)a的值;
          (III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=a-
          12x-1
          ,(a∈R)
          (1)求f(x)的定義域;
          (2)若f(x)為奇函數(shù),求a的值;
          (3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習冊答案