日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          1)求的零點及單調(diào)區(qū)間;

          2)求證:曲線存在斜率為8的切線,且切點的縱坐標(biāo).

          【答案】1)零點為,單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)證明見解析.

          【解析】

          1)求出方程的解即得零點,求出,討論其符號后可得函數(shù)的單調(diào)區(qū)間.

          2)利用單調(diào)性和零點存在定理可證有解,結(jié)合該零點滿足的方程可證.

          解:(1的定義域為,令.

          ,

          當(dāng)時,,故單調(diào)遞增;

          當(dāng)時,,故單調(diào)遞減.

          因此的零點為,單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

          2)先證明存在斜率為8的切線.

          ,

          要證曲線存在斜率為8的切線,即證有解.

          ,則,

          上單調(diào)遞減,

          ,

          所以存在使得,得證.

          接下來證明.

          由上可知,.

          因此,有

          因為函數(shù)單調(diào)遞減,因此,

          因此,欲證命題成立.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖(1),在矩形中,在邊上,.沿折起,使平面和平面都與平面垂直,連接,如圖(2.

          1)證明:;

          2)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對幾何學(xué)、力學(xué)等學(xué)科作出過卓越貢獻(xiàn).為調(diào)查中學(xué)生對這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.他們的調(diào)查結(jié)果如下:

          0項

          1項

          2項

          3項

          4項

          5項

          5項以上

          理科生(人)

          1

          10

          17

          14

          14

          10

          4

          文科生(人)

          0

          8

          10

          6

          3

          2

          1

          (1)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān)?

          比較了解

          不太了解

          合計

          理科生

          文科生

          合計

          (2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.

          (i)求抽取的文科生和理科生的人數(shù);

          (ii)從10人的樣本中隨機抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學(xué)期望.

          參考數(shù)據(jù):

          0.100

          0.050

          0.010

          0.001

          2.706

          3.841

          6.635

          10.828

          ,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某貧困地區(qū)共有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450.為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實施“精準(zhǔn)扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬元).

          1)應(yīng)收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?

          2)根據(jù)這150個樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為(0,0.5],(0.5,1],(11.5],(1.52],(2,2.5],(2.5,3].如果將頻率視為概率,估計該地區(qū)2017年家庭收入超過1.5萬元的概率;

          3)樣本數(shù)據(jù)中,有5戶山區(qū)家庭的年收入超過2萬元,請完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”?

          超過2萬元

          不超過2萬元

          總計

          平原地區(qū)

          山區(qū)

          5

          總計

          附:

          PK2k0

          0.100

          0.050

          0.010

          0.001

          k0

          2.706

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2020122日,國新辦發(fā)布消息:新型冠狀病毒來源于武漢一家海鮮市場非法銷售的野生動.專家通過全基因組比對發(fā)現(xiàn)此病毒與2003年的非典冠狀病毒以及此后的中東呼吸綜合征冠狀病毒,分別達(dá)到70%40%的序列相似性.這種新型冠狀病毒對人們的健康生命帶來了嚴(yán)重威脅因此,某生物疫苗研究所加緊對新型冠狀病毒疫苗進(jìn)行實驗,并將某一型號疫苗用在動物小白鼠身上進(jìn)行科研和臨床實驗,得到統(tǒng)計數(shù)據(jù)如下:

          未感染病毒

          感染病毒

          總計

          未注射疫苗

          20

          注射疫苗

          30

          總計

          50

          50

          100

          現(xiàn)從所有試驗小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.

          1)求列聯(lián)表中的數(shù)據(jù),,,的值;

          2)能否有99.9%把握認(rèn)為注射此種疫苗對預(yù)防新型冠狀病毒有效?

          附:.

          0.05

          0.01

          0.005

          0.001

          3.841

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)若函數(shù)在其定義域內(nèi)單調(diào)遞增,求實數(shù)的取值范圍;

          2)是否存在實數(shù),使得函數(shù)的圖象與軸相切?若存在,求滿足條件的的取值范圍,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線過橢圓的右焦點,且交橢圓于A,B兩點,線段AB的中點是,

          1)求橢圓的方程;

          2)過原點的直線l與線段AB相交(不含端點)且交橢圓于C,D兩點,求四邊形面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為拋物線上的一點,為拋物線上異于點的兩點,且直線的斜率與直線的斜率互為相反數(shù).

          1)求直線的斜率;

          2)設(shè)直線過點并交拋物線于,兩點,且,直線軸交于點,試探究的夾角是否為定值,若是則求出定值,若不是,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.

          1)求證:平面;

          2)已知二面角的余弦值為,求直線與平面所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案