日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1.  已知三棱錐P—ABC中,PC⊥底面ABC,,,二面角P-AB-C為,D、F分別為AC、PC的中點,DE⊥AP于E.

          (Ⅰ)求證:AP⊥平面BDE;                

          (Ⅱ)求平面BEF與平面BAC所成的銳二面角的余弦值.

           

           

           

           

           

           

           

           

          【答案】

           解:(Ⅰ)證明PC⊥底面ABC,又AB=BC,D為AC中點平面ACP平面ACP

          ,又平面BDE…………4分

          (Ⅱ)為PB在平面ABC上的射影為二面角P-AB-C的平面角

          作EHAC于H, 則………6分

          以D為原點DB,DC所在直線分別為X軸Y軸,平面ABC的垂線為Z軸建立空間直角坐標(biāo)系D-xyz可得.

          設(shè)平面BEF的法向量為

          可取…………..10分

          取平面ABC的法向量平面BEF與平面BAC所成的銳二面角的余弦值為…………12分

          解法(二)簡答,,,

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知三棱錐P-ABC的三條側(cè)棱PA,PB,PC兩兩相互垂直,且PA=2
          3
          ,PB=3,PC=2外接球的直徑等于
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知三棱錐P-ABC中,PC⊥底面ABC,AB=BC,D、F分別為AC、PC的中點,DE⊥AP于E.
          (Ⅰ)求證:AP⊥平面BDE;
          (Ⅱ)若AE:EP=1:2,求截面BEF分三棱錐P-ABC所成上、下兩部分的體積比.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知三棱錐P-ABC,∠ACB=90°,CB=4,AB=20,D為AB中點,M為PB的中點,且△PDB是正三角形,PA⊥PC.
          (I)求證:DM∥平面PAC;
          (II)求證:平面PAC⊥平面ABC;
          (Ⅲ)求三棱錐M-BCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•河西區(qū)二模)如圖,已知三棱錐P-ABC中,PA⊥面ABC,其中正視圖為Rt△PAC,AC=2
          6
          ,PA=4,俯視圖也為直角三角形,另一直角邊長為2
          2

          (Ⅰ)畫出側(cè)視圖并求側(cè)視圖的面積;
          (Ⅱ)證明面PAC⊥面PAB;
          (Ⅲ)求直線PC與底面ABC所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•黃浦區(qū)二模)已知三棱錐P-ABC的棱長都是2,點D是棱AP上不同于P的點.
          (1)試用反證法證明直線BD與直線CP是異面直線.
          (2)求三棱錐P-ABC的體積VP-ABC

          查看答案和解析>>

          同步練習(xí)冊答案