日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在三棱柱中,平面,.以,為鄰邊作平行
          四邊形,連接
          (1)求證:平面
          (2)求證:平面

          (1)平面;(2)平面.

          解析試題分析:(1)要證線面平行,需在平面中找出一條直線與平行.連接,三棱柱,由為平行四邊形得,,所以四邊形為平行四邊形,,從而能夠證明平面;(2)要證線面垂直,需要在平面中找出兩條相交直線與垂直. ∵平行四邊形中,,
           ,∵平面,平面,∴                                       又∵,平面,平面,∴平面
          試題解析:(1)連接,

          三棱柱,        
          為平行四邊形得
                                           2分
          四邊形為平行四邊形,                  4分
                           6分
          平面                                    7分
          (2) ∵平行四邊形中,
                                         

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知三棱柱的側(cè)棱與底面垂直,且,,點、分別為、、的中點.
          (1)求證:平面
          (2)求證:;
          (3)求點到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四邊形ACFE是矩形,且平面平面ABCD,點M在線段EF上.
          (1)求證:平面ACFE;
          (2)當(dāng)EM為何值時,AM//平面BDF?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知直四棱柱的底面為正方形,,為棱的中點.

          (1)求證:;
          (2)設(shè)中點,為棱上一點,且,求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四棱錐中,底面為平行四邊形,,底面

          (1)證明:;
          (2)若,求二面角余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖1,在直角梯形中,,,且
          現(xiàn)以為一邊向梯形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,的中點,如圖2.

          (1)求證:∥平面;
          (2)求證:;
          (3)求點到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖①,已知ABC是邊長為l的等邊三角形,D,E分別是AB,AC邊上的點,AD=AE,F(xiàn)是BC的中點,AF與DE交于點G,將ABF沿AF折起,得到如圖②所示的三棱錐A-BCF,其中BC=

          (1)證明:DE//平面BCF;
          (2)證明:CF平面ABF;
          (3)當(dāng)AD=時,求三棱錐F-DEG的體積

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,E是以AB為直徑的半圓弧上異于A,B的點,矩形ABCD所在平面垂直于該半圓所在的平面,且AB=2AD=2。

          (1).求證:EA⊥EC;
          (2).設(shè)平面ECD與半圓弧的另一個交點為F。
          ①求證:EF//AB;
          ②若EF=1,求三棱錐E—ADF的體積

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四棱錐中,平面,底面為矩形,的中點.

          (1)求證:
          (2)在線段上是否存在一點,使得平面?若存在,求出的長;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案