日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若f(n)為n2+1(n∈N*)的各位數(shù)字之和,如 142+1=197,1+9+7=17則f(14)=17,記f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n)]k∈N*,則f2010(8)=
          8
          8
          分析:由已知中f(n)為n2+1(n∈N*)的各位數(shù)字之和,f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n)],我們可以逐步求出f1(8),f2(8),f3(8),f4(8),…的值,并分析其值變化的規(guī)律,進(jìn)而求出結(jié)果.
          解答:解:f1(8)=f(8)=64+1=656+5=11
          f2(8)=f[f1(8)]=f(11)=121+1=122=1+2+2=5
          f3(8)=f[f2(8)]=f(5)=25+1=26=8
          f4(8)=f[f3(8)]=f(8)

          所以f2010(8)=f3(8)=8
          故答案為:8
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的值,函數(shù)的周期性,其中根據(jù)已知中的新定義,逐步求出f1(8),f2(8),f3(8),f4(8),…的值,并分析其值變化的周期性規(guī)律,是解答本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          7、若f(n)為n2+1(n∈N*)的各位數(shù)字之和,如142+1=197,1+9+7=17,則f(14)=17;記f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,則f2008(8)=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          13、若f(n)為n2+1(n∈N*)的各位數(shù)字之和,如142+1=197,1+9+7=17,則f(14)=17,記f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,則f2008(8)=
          11

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若f(n)為n2+1(n∈N*)的各位數(shù)字之和,如142+1=197,1+9+7=17則f(14)=17,記f1(n)=f(n),f2(n)=f(f1(n)),fk+1(n)=f(fk(n))k∈N*則f2012(8)=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若f(n)為n2+1(n∈N*)的各位數(shù)字之和,如142+1=197,1+9+7=17,則f(14)=17,記f1(n)=f(n),f2(n)=f〔f1(n)〕,…,fk+1(n)=f〔fk(n)〕,k∈N*,則f2012(8)=
          5
          5

          查看答案和解析>>

          同步練習(xí)冊(cè)答案