日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直三棱柱ABC-A1B1C1中,AC=BC=CC1=1,且AC⊥BC,過(guò)C1作截面分別交AC,BC于E,F(xiàn),且二面角C1-EF-C為60°,則三棱錐C1-EFC體積的最小值為( 。
          分析:先根據(jù)二面角求出在三角形CEF斜邊EF邊上的高,設(shè)CE=a,CF=b,則EF=
          a2+b2
          ,然后等面積建立等式,再利用基本不等式求出ab的最值,利用體積公式表示出三棱錐C1-EFC體積,從而求出體積的最小值.
          解答:解:∵二面角C1-EF-C為60°
          ∴在三角形CEF斜邊EF邊上的高為
          3
          3

          設(shè)CE=a,CF=b,則EF=
          a2+b2

          在三角形CEF中ab=
          a2+b2
          3
          3
          2ab
          3

          ab≥
          2
          3

          三棱錐C1-EFC體積V=
          1
          3
          × 
          1
          2
          abCC1
          =
          1
          6
          ab
          1
          9

          故選B.
          點(diǎn)評(píng):本題主要考查了二面角的應(yīng)用,以及錐體的體積和基本不等式求最值,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
          2
          ,側(cè)棱AA1=1,側(cè)面AA1B1B的兩條對(duì)角線交于點(diǎn)D,B1C1的中點(diǎn)為M,求證:CD⊥平面BDM.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D為A1C1的中點(diǎn),E為B1C的中點(diǎn).
          (1)求直線BE與A1C所成的角;
          (2)在線段AA1中上是否存在點(diǎn)F,使CF⊥平面B1DF,若存在,求出|
          AF
          |;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC所成角的余弦值是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分別為AC,B1C1的中點(diǎn).
          (Ⅰ)求線段MN的長(zhǎng);
          (Ⅱ)求證:MN∥平面ABB1A1;
          (Ⅲ)線段CC1上是否存在點(diǎn)Q,使A1B⊥平面MNQ?說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中點(diǎn).
          (Ⅰ)證明:A1C1∥平面ACD;
          (Ⅱ)求異面直線AC與A1D所成角的大;
          (Ⅲ)證明:直線A1D⊥平面ADC.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案