日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)的圖象是在[a,b]上連續(xù)不斷的曲線,定義:f1(x)=min{f(t)|a≤t≤x},(x∈[a,b]);f2(x)=max{f(t)|a≤t≤x},(x∈[a,b])其中,min{f(t)|t∈D}表示函數(shù)f(t)在D上的最小值,max{f(t)|t∈D}表示函數(shù)f(t)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)數(shù)學(xué)公式
          (1)求f1(x),f2(x)的表達(dá)式;
          (2)判斷f(x)是否為數(shù)學(xué)公式上的“k階收縮函數(shù)”,如果是,請(qǐng)求對(duì)應(yīng)的k的值;如果不是,請(qǐng)說(shuō)明理由.

          解:(1)由題意可得,.…
          (2)f2(x)-f1(x)=2sinx.…
          若f(x)是為上的“k階收縮函數(shù)”,則2sinx≤kx在上恒成立…
          ,使得2sinx>(k-1)x成立.…
          ,則φ′(x)=cosx-1<0.…
          ∴φ(x)=sinx-x在單調(diào)遞減,
          ,即sinx-x≤0…
          于是2sinx≤2x在恒成立.
          ,2sinx>x成立
          故存在最小的正整數(shù)k=2,使得f(x)是為上的“k階收縮函數(shù)”…
          分析:(1)利用新定義,代入計(jì)算,可得f1(x),f2(x)的表達(dá)式;
          (2)由題意,f2(x)-f1(x)=2sinx,若f(x)是為上的“k階收縮函數(shù)”,則2sinx≤kx在上恒成立,且,使得2sinx>(k-1)x成立,構(gòu)建新函數(shù)φ(x)=sinx-x,判斷函數(shù)在單調(diào)遞減,即可求得結(jié)論.
          點(diǎn)評(píng):本題考查新定義,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查學(xué)生對(duì)新問(wèn)題的理解,考查學(xué)生的計(jì)算能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)的圖象有且僅有由五個(gè)點(diǎn)構(gòu)成,它們分別為(1,2),(2,3),(3,3),(4,2),(5,2),則f(f(f(5)))=
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•天門模擬)已知函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(1,λ),且對(duì)任意x∈R,都有f(x+1)=f(x)+2.?dāng)?shù)列{an}滿足a1=λ-2,2an+1=
          2n,n為奇數(shù)
          f(an),n為偶數(shù)

          (I)求f(n)(n∈N*)的表達(dá)式;
          (II)設(shè)λ=3,求a1+a2+a3+…+a2n;
          (III)若對(duì)任意n∈N*,總有anan+1<an+1an+2,求實(shí)數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且當(dāng)x<0時(shí),f(x)=2x-4,那么當(dāng)x>0時(shí),f(x)=
          2x+4
          2x+4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•焦作一模)已知函數(shù)f(x)的圖象過(guò)點(diǎn)(
          π
          4
          ,-
          1
          2
          ),它的導(dǎo)函數(shù)f′(x)=Acos(ωx+φ)(x∈R)的圖象的一部分如圖所示,其中A>0,ω>0,|φ|<
          π
          2
          ,為了得到函
          數(shù)f(x)的圖象,只要將函數(shù)y=sinx(x∈R)的圖象上所有的點(diǎn)( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱,且當(dāng)x≠2時(shí)其導(dǎo)函數(shù)f′(x)滿足xf′(x)>2f′(x),若2<a<4,則下列表示大小關(guān)系的式子正確的是( 。
          A、f(2a)<f(3)<f(log2a)B、f(3)<f(log2a)<f(2a)C、f(log2a)<f(3)<f(2a)D、f(log2a)<f(2a)<f(3)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案