日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,三棱錐P-ABC的三個(gè)側(cè)面均為邊長(zhǎng)是1的等邊三角形,M,N分別為PA,BC的中點(diǎn).
          (1)求MN的長(zhǎng);
          (2)求證:PA⊥BC;
          (3)求三棱錐P-ABC的表面積.

          【答案】分析:(1)先連接MB,MC.根據(jù)三棱錐P-ABC 的三個(gè)側(cè)面均為邊長(zhǎng)是1 的等邊三角形,得出底面△ABC 也是邊長(zhǎng)為1 的等邊三角形.在Rt△MNB 中利用勾股定理即可求得MN的長(zhǎng);
          (2)由M 是PA 的中點(diǎn),得出 PA⊥MB,同理 PA⊥MC.根據(jù)線面垂直的判定定理得出 PA⊥平面MBC,再由線面垂直的性質(zhì)定理可得 PA⊥BC;
          (3)根據(jù)三棱錐P-ABC 的三個(gè)側(cè)面和底面均為邊長(zhǎng)是1 的等邊三角形,結(jié)合面積公式得出三棱錐P-ABC 的表面積.
          解答:解:(1)連接MB,MC.
          因?yàn)?三棱錐P-ABC 的三個(gè)側(cè)面均為邊長(zhǎng)是1 的等邊三角形,
          所以 ,且底面△ABC 也是邊長(zhǎng)為1 的等邊三角形.
          因?yàn)?N 為BC 的中點(diǎn),所以 MN⊥BC.在Rt△MNB 中,.…4分
          (2)證明:因?yàn)镸 是PA 的中點(diǎn),所以 PA⊥MB,同理 PA⊥MC.
          因?yàn)?MB∩MC=M,所以 PA⊥平面MBC,
          又因?yàn)?BC?平面MBC,所以 PA⊥BC.…8分
          (3)因?yàn)?側(cè)面等邊三角形APB 的面積為
          且三棱錐P-ABC 的三個(gè)側(cè)面和底面均為邊長(zhǎng)是1 的等邊三角形,
          所以 三棱錐P-ABC 的表面積為.…12分
          點(diǎn)評(píng):本小題主要考查空間中直線與直線之間的位置關(guān)系、棱柱、棱錐、棱臺(tái)的側(cè)面積和表面積等基礎(chǔ)知識(shí),考查運(yùn)算求解能力與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點(diǎn),且CD⊥平面PAB
          (Ⅰ)求證:AB⊥平面PCB;
          (Ⅱ)求二面角C-PA-B的大小的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2006•石景山區(qū)一模)如圖,三棱錐P-ABC中,
          PA
          AB
          =
          PA
          AC
          =
          AB
          AC
          =0
          PA
          2
          =
          AC
          2
          =4
          AB
          2

          (Ⅰ)求證:AB⊥平面PAC;
          (Ⅱ)若M為線段PC上的點(diǎn),設(shè)
          |
          PM|
          |PC
          |
          ,問λ為何值時(shí)能使直線PC⊥平面MAB;
          (Ⅲ)求二面角C-PB-A的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•湖南模擬)如圖,三棱錐P-ABC中,側(cè)面PAC⊥底面ABC,∠APC=90°,且AB=4,AP=PC=2,BC=2
          2

          (Ⅰ)求證:PA⊥平面PBC;
          (Ⅱ)若E為側(cè)棱PB的中點(diǎn),求直線AE與底面ABC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•德陽(yáng)二模)如圖,三棱錐P-ABC中,PA丄面ABC,∠ABC=90°,PA=AB=1,BC=2,則P-ABC的外接球的表面積為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖在三棱錐P-ABC中,AB⊥PC,AC=2,BC=4,AB=2
          3
          ,∠PCA=30°.
          (1)求證:AB⊥平面PAC. (2)設(shè)二面角A-PC-B•的大小為θ•,求tanθ•的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案