日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 選修4-5:不等式選講
          設(shè)f(x)=|x-a|,a∈R.
          (I)當(dāng)-1≤x≤3時(shí),f(x)≤3,求a的取值范圍;
          (II)若對(duì)任意x∈R,f(x-a)+f(x+a)≥1-2a恒成立,求實(shí)數(shù)a的最小值.
          分析:(I)當(dāng)-1≤x≤3時(shí),f(x)=|x-a|≤3,即a-3≤x≤a+3.由此建立關(guān)于a的不等關(guān)系能求出a的取值范圍.
          (II)根據(jù)絕對(duì)值不等式的性質(zhì)得|x-2a|+|x|最小值就是2|a|,若f(x-a)+f(x+a)≥1-2a對(duì)x∈R恒成立,則只要滿足2|a|≥1-2a,由此能求出實(shí)數(shù)a的最小值.
          解答:解:(Ⅰ)f(x)=|x-a|≤3,即a-3≤x≤a+3.
          依題意,
          a-3≤-1
          a+3≥3

          由此得a的取值范圍是[0,2].…(4分)
          (Ⅱ)f(x-a)+f(x+a)=|x-2a|+|x|≥|(x-2a)-x|=2|a|.…(6分)
          當(dāng)且僅當(dāng)(x-2a)x≤0時(shí)取等號(hào).
          解不等式2|a|≥1-2a,得a≥
          1
          4

          故a的最小值為
          1
          4
          .…(10分)
          點(diǎn)評(píng):本題考查不等式的解集的求法,考查滿足條件的實(shí)數(shù)的最小值的求法,解題時(shí)要認(rèn)真審題,注意零點(diǎn)分段討論法和絕對(duì)值不等式性質(zhì)的合理運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          選修4-5:不等式選講
          設(shè)x,y,z∈(0,+∞),且x+y+z=1,求
          1
          x
          +
          4
          y
          +
          9
          z
          的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【選修4-5:不等式選講】
          求下列不等式的解集
          (Ⅰ)|2x-1|-|x+3|>0
          (Ⅱ)x+|2x-1|>3.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          選修4-5:不等式選講:
          設(shè)正有理數(shù)x是
          2
          的一個(gè)近似值,令y=1+
          1
          1+x

          (Ⅰ)若x>
          2
          ,求證:y<
          2
          ;
          (Ⅱ)比較y與x哪一個(gè)更接近于
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•鹽城模擬)(選修4-5:不等式選講)
          已知a,b,c為正數(shù),且a2+a2+c2=14,試求a+2b+3c的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•烏魯木齊一模)選修4-5:不等式選講
          設(shè)函數(shù),f(x)=|x-1|+|x-2|.
          (I)求證f(x)≥1;
          (II)若f(x)=
          a2+2
          a2+1
          成立,求x的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案