日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)的定義域為R,并滿足以下三個條件:
          ①對于一切實數(shù)x,都有f(x)>0;
          ②對任意的x,y∈R,f(xy)=[f(x)]y;  
          ③f(
          13
          )>1;
          (1)求f(0)的值,并判斷f(x)的單調(diào)性;
          (2)若f(3x)-f(9x-3x+1-2K)>0對任意的x∈[0,1]恒成立,求實數(shù)K的取值范圍.
          分析:(1)根據(jù)條件f(xy)=[f(x)]y;令x=
          1
          3
          ,y=0,可得f(0),利用賦值法求f(1),然后根據(jù)指數(shù)函數(shù)的性質(zhì)確定函數(shù)的單調(diào)性.
          (2)利用函數(shù)的單調(diào)性將不等式轉(zhuǎn)化為3x>9x-3x+1-2K,然后利用指數(shù)不等式的性質(zhì)求K的取值范圍.
          解答:解:(1)因為f(x)>0,任意的x,y∈R,f(xy)=[f(x)]y,所以令x=
          1
          3
          ,y=0,
          則f(0)=[f(
          1
          3
          )]0=1,即f(0)=1.
          x=
          1
          3
          ,y=3
          f(1)=f(
          1
          3
          ×3)=[f(
          1
          3
          )]
          3
          ,因為f(
          1
          3
          )>1,所以f(1)=f(
          1
          3
          ×3)=[f(
          1
          3
          )]
          3
          >1

          令x=1,則f(xy)=f(y)=[f(1)]y,
          即f(x)=[f(1)]x,為底數(shù)大于1的指數(shù)函數(shù),所以函數(shù)f(x)在R上單調(diào)遞增.
          (2)由f(3x)-f(9x-3x+1-2K)>0得f(3x)>f(9x-3x+1-2K),因為函數(shù)單調(diào)遞增,則3x>9x-3x+1-2K,
          即2K>9x-3x+1-3x=9x-4•3x=(3x-2)2-4,
          因為x∈[0,1],所以1≤3x≤3,所以當3x=2時,函數(shù)y=(3x-2)2-4取得最小值-4,當3x=1或3時,函數(shù)y=(3x-2)2-4取得最大值-3,
          所以2K>-3,解得K>-
          3
          2
          ,所以實數(shù)K的取值范圍是K>-
          3
          2
          點評:本題主要考查抽象函數(shù)的應(yīng)用和性質(zhì),利用賦值法是解決抽象函數(shù)的基本方法,綜合性較強,運算量較大.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1y1),N(x2,y2)
          是f(x)圖象上的兩點,橫坐標為
          1
          2
          的點P滿足2
          OP
          =
          OM
          +
          ON
          (O為坐標原點).
          (Ⅰ)求證:y1+y2為定值;
          (Ⅱ)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )
          ,其中n∈N*,且n≥2,求Sn;
          (Ⅲ)已知an=
          1
          6
          ,                          n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          ,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          下列說法正確的有( 。﹤.
          ①已知函數(shù)f(x)在(a,b)內(nèi)可導,若f(x)在(a,b)內(nèi)單調(diào)遞增,則對任意的?x∈(a,b),有f′(x)>0.
          ②函數(shù)f(x)圖象在點P處的切線存在,則函數(shù)f(x)在點P處的導數(shù)存在;反之若函數(shù)f(x)在點P處的導數(shù)存在,則函數(shù)f(x)圖象在點P處的切線存在.
          ③因為3>2,所以3+i>2+i,其中i為虛數(shù)單位.
          ④定積分定義可以分為:分割、近似代替、求和、取極限四步,對求和In=
          n
          i=1
          f(ξi)△x
          中ξi的選取是任意的,且In僅于n有關(guān).
          ⑤已知2i-3是方程2x2+px+q=0的一個根,則實數(shù)p,q的值分別是12,26.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=sin(2x-
          π
          6
          ),g(x)=sin(2x+
          π
          3
          ),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
          (i)求函數(shù)f(x)的單調(diào)區(qū)間;
          (ii)證明:若對于任意非零實數(shù)x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
          S1S2
          為定值;
          (Ⅱ)對于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=x3-ax+b存在極值點.
          (1)求a的取值范圍;
          (2)過曲線y=f(x)外的點P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點分別為A、B.
          (。┳C明:a=b;
          (ⅱ)請問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

          查看答案和解析>>

          同步練習冊答案