日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.

          1)求直線l的普通方程和圓C的直角坐標(biāo)方程;

          2)直線l與圓C交于A,B兩點(diǎn),點(diǎn)P(2,1),求|PA||PB|的值.

          【答案】1)直線的普通方程,圓的直角坐標(biāo)方程:.2

          【解析】

          1)直接利用轉(zhuǎn)換關(guān)系的應(yīng)用,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.

          2)將直線的參數(shù)方程代入圓的直角坐標(biāo)方程,利用一元二次方程根和系數(shù)關(guān)系式即可求解.

          1)直線l的參數(shù)方程為t為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為x+y30.

          C的極坐標(biāo)方程為ρ24ρcosθ3,轉(zhuǎn)換為直角坐標(biāo)方程為x2+y24x30.

          2)把直線l的參數(shù)方程為t為參數(shù)),代入圓的直角坐標(biāo)方程x2+y24x30,

          得到

          所以|PA||PB||t1t2|6.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列說法正確的是( )

          A.若散點(diǎn)圖中的樣本點(diǎn)散布在從左下角到右上角的區(qū)域,則散點(diǎn)圖中的兩個變量的相關(guān)關(guān)系為負(fù)相關(guān)

          B.殘差平方和越小的模型,擬合的效果越好

          C.用相關(guān)指數(shù)來刻畫回歸效果,的值越小,說明模型的擬合效果越好

          D.線性相關(guān)系數(shù)越大,兩個變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列說法正確的是( )

          A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件

          B. p:,,則,

          C. “若,則”的否命題是“若,則

          D. 為假命題,則p,q均為假命題

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知A是拋物線Ey22px(p>0)上的一點(diǎn),以點(diǎn)A和點(diǎn)B(2,0)為直徑兩端點(diǎn)的圓C交直線x1MN兩點(diǎn).

          1)若|MN|2,求拋物線E的方程;

          2)若0p1,拋物線E與圓(x5)2+y2=9x軸上方的交點(diǎn)為P,Q,點(diǎn)GPQ的中點(diǎn),O為坐標(biāo)原點(diǎn),求直線OG斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】從甲地到乙地要經(jīng)過3個十字路口,設(shè)各路口信號燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為.

          (Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

          (Ⅱ)若有2輛車獨(dú)立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)若,求函數(shù)的最大值;

          2)令,討論函數(shù)的單調(diào)區(qū)間;

          3)若,正實(shí)數(shù)滿足,證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

          最高氣溫

          [10,15)

          [15,20)

          [20,25)

          [25,30)

          [30,35)

          [35,40)

          天數(shù)

          2

          16

          36

          25

          7

          4

          以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

          (1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;

          (2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】楊輝,字謙光,南宋時期杭州人.在他1261年所著的《詳解九章算法》一書中,輯錄了如圖所示的三角形數(shù)表,稱之為開方作法本源圖,并說明此表引自11世紀(jì)中葉(約公元1050年)賈憲的《釋鎖算術(shù)》,并繪畫了古法七乘方圖”.故此,楊輝三角又被稱為賈憲三角”.楊輝三角是一個由數(shù)字排列成的三角形數(shù)表,一般形式如下:

          基于上述規(guī)律,可以推測,當(dāng)時,從左往右第22個數(shù)為_____________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在A,B實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在A,B試驗(yàn)地隨機(jī)抽選各50株,對每株進(jìn)行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.

          1)求圖中a的值,并求綜合評分的中位數(shù);

          2)用樣本估計總體,以頻率作為概率,若在A,B兩塊實(shí)驗(yàn)地隨機(jī)抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;

          3)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).

          優(yōu)質(zhì)花苗

          非優(yōu)質(zhì)花苗

          合計

          甲培育法

          20

          乙培育法

          10

          合計

          附:下面的臨界值表僅供參考.

          015

          010

          005

          0025

          0010

          0005

          0001

          2072

          2706

          3841

          5024

          6635

          7879

          10828

          (參考公式:,其中.)

          查看答案和解析>>

          同步練習(xí)冊答案