日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是邊長為a的菱形,∠BAD=120°,PA=b,
          (Ⅰ)求證:平面PBD⊥平面PAC;
          (Ⅱ)設(shè)AC與BD交于點(diǎn)O,M為OC中點(diǎn),若二面角O-PM-D的正切值為2,求a:b的值。

          解:(Ⅰ)因?yàn)镻A⊥平面ABCD,
          所以PA⊥BD,
          又ABCD為菱形,
          所以AC⊥BD,
          所以BD⊥平面PAC,
          從而平面PBD⊥平面PAC。
          (Ⅱ)過O作OH⊥PM交PM于H,連HD,
          因?yàn)镈O⊥平面PAC,
          可以推出DH⊥PM,
          所以∠OHD為A-PM-D的平面角,
          ,
          ,
          從而,
          ,
          所以
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點(diǎn),F(xiàn)為AD的中點(diǎn).
          (Ⅰ)證明EF∥平面PAB;
          (Ⅱ)證明EF⊥平面PBC;
          (III)點(diǎn)M是四邊形ABCD內(nèi)的一動(dòng)點(diǎn),PM與平面ABCD所成的角始終為45°,求動(dòng)直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,側(cè)面PBC⊥底面ABCD,O是BC的中點(diǎn).
          (1)求證:PO⊥平面ABCD;
          (2)求證:PA⊥BD
          (3)若二面角D-PA-O的余弦值為
          10
          5
          ,求PB的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E為BC中點(diǎn),AE與BD交于O點(diǎn),AB=BC=2CD=2,BD⊥PE.
          (1)求證:平面PAE⊥平面ABCD; 
          (2)若直線PA與平面ABCD所成角的正切值為
          5
          2
          ,PO=2,求四棱錐P-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是線段PC上一點(diǎn),PC⊥平面BDE.
          (Ⅰ)求證:BD⊥平面PAB.
          (Ⅱ)若PA=4,AB=2,BC=1,求直線AC與平面PCD所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省濟(jì)寧一中高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點(diǎn),F(xiàn)為AD的中點(diǎn).
          (Ⅰ)證明EF∥平面PAB;
          (Ⅱ)證明EF⊥平面PBC;
          (III)點(diǎn)M是四邊形ABCD內(nèi)的一動(dòng)點(diǎn),PM與平面ABCD所成的角始終為45°,求動(dòng)直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

          查看答案和解析>>

          同步練習(xí)冊答案