已知函數(shù).
(Ⅰ)若,求
在點(diǎn)
處的切線方程;
(Ⅱ)求函數(shù)的極值點(diǎn);
(Ⅲ)若恒成立,求
的取值范圍.
(Ⅰ);(Ⅱ)當(dāng)
時(shí),
的極小值點(diǎn)為
和
,極大值點(diǎn)為
;當(dāng)
時(shí),
的極小值點(diǎn)為
;當(dāng)
時(shí),
的極小值點(diǎn)為
;(Ⅲ)
.
解析試題分析:(Ⅰ)時(shí),
,先求切線斜率
,又切點(diǎn)為
,利用直線的點(diǎn)斜式方程求出直線方程;(Ⅱ)極值點(diǎn)即定義域內(nèi)導(dǎo)數(shù)為0的根,且在其兩側(cè)導(dǎo)數(shù)值異號(hào),首先求得定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8b/2/1z5fg2.png" style="vertical-align:middle;" />,再去絕對號(hào),分為
和
兩種情況,其次分別求
的根并與定義域比較,將定義域外的舍去,并結(jié)合圖象判斷其兩側(cè)導(dǎo)數(shù)符號(hào),進(jìn)而求極值點(diǎn);(Ⅲ)
即
,當(dāng)
時(shí),顯然成立;當(dāng)
時(shí),
,當(dāng)
時(shí),去絕對號(hào)得
恒成立或
恒成立,轉(zhuǎn)換為求右側(cè)函數(shù)的最值處理.
試題解析:的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8b/2/1z5fg2.png" style="vertical-align:middle;" />.
(Ⅰ)若,則
,此時(shí)
.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/96/3/1imaf2.png" style="vertical-align:middle;" />,所以
,所以切線方程為
,即
.
(Ⅱ)由于,
.
⑴ 當(dāng)時(shí),
,
,
令,得
,
(舍去),
且當(dāng)時(shí),
;當(dāng)
時(shí),
,
所以在
上單調(diào)遞減,在
上單調(diào)遞增,
的極小值點(diǎn)為
.
⑵ 當(dāng)時(shí),
.
① 當(dāng)時(shí),
,令
,得
,
(舍去).
若,即
,則
,所以
在
上單調(diào)遞增;
若,即
, 則當(dāng)
時(shí),
;當(dāng)
時(shí),
,所以
在區(qū)間
上是單調(diào)遞減,在
上單調(diào)遞增,
的極小值點(diǎn)為
.
② 當(dāng)時(shí),
.
令,得
,記
,
若,即
時(shí),
,所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程有解,求實(shí)數(shù)m的取值范圍;
(3)若存在實(shí)數(shù),使
成立,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若曲線在點(diǎn)
處的切線與直線
平行,求實(shí)數(shù)
的值;
(Ⅱ)若函數(shù)在
處取得極小值,且
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,現(xiàn)要在邊長為的正方形
內(nèi)建一個(gè)交通“環(huán)島”.正方形的四個(gè)頂點(diǎn)為圓心在四個(gè)角分別建半徑為
(
不小于
)的扇形花壇,以正方形的中心為圓心建一個(gè)半徑為
的圓形草地.為了保證道路暢通,島口寬不小于
,繞島行駛的路寬均不小于
.
(1)求的取值范圍;(運(yùn)算中
取
)
(2)若中間草地的造價(jià)為元
,四個(gè)花壇的造價(jià)為
元
,其余區(qū)域的造價(jià)為
元
,當(dāng)
取何值時(shí),可使“環(huán)島”的整體造價(jià)最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù)
.
(Ⅰ)當(dāng)時(shí),求
的最小值;
(Ⅱ)若在區(qū)間
上是單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
.
(Ⅰ)若與
在
處相切,試求
的表達(dá)式;
(Ⅱ)若在
上是減函數(shù),求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明不等式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中
是自然對數(shù)的底數(shù).
(1)求函數(shù)的零點(diǎn);
(2)若對任意均有兩個(gè)極值點(diǎn),一個(gè)在區(qū)間
內(nèi),另一個(gè)在區(qū)間
外,
求的取值范圍;
(3)已知且函數(shù)
在
上是單調(diào)函數(shù),探究函數(shù)
的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=在x=0,x=
處存在極值。
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)函數(shù)y=f(x)的圖象上存在兩點(diǎn)A,B使得△AOB是以坐標(biāo)原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在y軸上,求實(shí)數(shù)c的取值范圍;
(Ⅲ)當(dāng)c=e時(shí),討論關(guān)于x的方程f(x)=kx(k∈R)的實(shí)根個(gè)數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
,其中
且
.
(Ⅰ) 當(dāng),求函數(shù)
的單調(diào)遞增區(qū)間;
(Ⅱ)若時(shí),函數(shù)
有極值,求函數(shù)
圖象的對稱中心的坐標(biāo);
(Ⅲ)設(shè)函數(shù) (
是自然對數(shù)的底數(shù)),是否存在a使
在
上為減函數(shù),若存在,求實(shí)數(shù)a的范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com