日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知⊥平面,,且 的中點.
          (Ⅰ)求證:∥平面;
          (Ⅱ)求證:平面BCE⊥平面;
          (III) 求此多面體的體積.
          解:(Ⅰ)取CE中點P,連結(jié)FP、BP,
          ∵F為CD的中點, ∴FP∥DE,且FP=
          又AB∥DE,且AB= ∴AB∥FP,且AB=FP,
          ∴ABPF為平行四邊形,∴AF∥BP.         …………3分
          又∵AF平面BCE,BP ∴AF∥平面BCE         …………4分
          (Ⅱ)∵,所以△ACD為正三角形,∴AF⊥CD
          ∵AB⊥平面ACD,DE//AB ∴DE⊥平面ACD  又AF平面ACD
          ∴DE⊥AF  又AF⊥CD,CD∩DE=D
          ∴AF⊥平面CDE             又BP∥AF ∴BP⊥平面CDE
          又∵BP平面BCE ∴平面BCE⊥平面CDE              …………8分
          (III)此多面體是一個以C為定點,以四邊形ABED為底邊的四棱錐,
          ,等邊三角形AD邊上的高就是四棱錐的高
            
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (本小題共13分) 如圖,在三棱錐中,底面ABC
          ,點分別在棱上,且 
          (Ⅰ)求證:平面;
          (Ⅱ)當的中點時,求與平面所成角的大小的余弦值;
          (Ⅲ)是否存在點,使得二面角為直二面角?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (12分)如圖,在三棱柱中,已知側(cè)面.為棱的中點,

          (1)求證: ;(2)若,求二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          在正方體ABCD-A1B1C1D1中,給出以下結(jié)論:
          ①AC∥平面A1C1B         ②AC1與BD1是異面直線
          ③AC⊥平面BB1D1D               ④平面ACB1⊥平面BB1D1D
          其中正確結(jié)論的個數(shù)是(   )
          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (本小題滿分12分)已知是邊長為1的正方體,求:

          ⑴直線與平面所成角的正切值;
          ⑵二面角的大。
          ⑶求點到平面的距離。

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (本題滿分12分)如圖, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,點D是AB的中點
          (Ⅰ)求證:AC⊥BC1
          (Ⅱ)求二面角的平面角的正切值

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          側(cè)面都是直角三角形的正三棱錐,底面邊長為a,則此棱錐的全面積是
                  B        C        D 都不對

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (本小題滿分14分)
          如圖4,四棱錐P-ABCD的底面ABCD是正方形,PD垂直于底面ABCD,已知四棱錐的正視圖,如圖5所示,
          (Ⅰ)若M是PC的中點,證明:DM⊥平面PBC;
          (Ⅱ)求棱錐A-BDM的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          、如圖,四棱錐中,底面ABCD為矩形,底面ABCD,AD=PD=1,AB=),E,F(xiàn)分別CD,PB的中點。
          (1)求證:EF平面PAB;,
          (2)當時,求AC與平面AEF所成角的正弦值。

          查看答案和解析>>

          同步練習冊答案