已知函數(shù).
(1)當(dāng)時,證明:
在
上為減函數(shù);
(2)若有兩個極值點(diǎn)
求實(shí)數(shù)
的取值范圍.
(1)用導(dǎo)數(shù)來證明 (2)
【解析】
試題分析:(1)證明:時,
,
,
時,
;
時,
;
在區(qū)間
遞增,在區(qū)間
遞減;
,即
在
上恒成立,
在
遞減.
(2)解:若有兩個極值點(diǎn)
,則
是方程
的兩個根,故方程
有兩個根
,又
顯然不是該方程的根,所以方程
有兩個根,
設(shè)當(dāng)
時,
且
單調(diào)遞減,
當(dāng)時,
當(dāng)
時,
單調(diào)遞減,當(dāng)
時,
單調(diào)遞增,要使方程
有兩個根,需
即
且
故
的取值范圍為
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值及單調(diào)性.
點(diǎn)評:本題考查了導(dǎo)數(shù)在解決函數(shù)極值和證明不等式中的應(yīng)用,解題時要認(rèn)真求導(dǎo),防止錯到起點(diǎn),還要有數(shù)形結(jié)合的思想,提高解題速度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù),其中
(1) 當(dāng)滿足什么條件時,
取得極值?
(2) 已知,且
在區(qū)間
上單調(diào)遞增,試用
表示出
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)
.
(1)當(dāng)a=3時,求f(x)的零點(diǎn);
(2)求函數(shù)y=f (x)在區(qū)間[1,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省深圳市寶安區(qū)高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),
.
(1)當(dāng)為何值時,
取得最大值,并求出其最大值;
(2)若,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三5月高考三輪模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),
(1)當(dāng)且
時,證明:對
,
;
(2)若,且
存在單調(diào)遞減區(qū)間,求
的取值范圍;
(3)數(shù)列,若存在常數(shù)
,
,都有
,則稱數(shù)列
有上界。已知
,試判斷數(shù)列
是否有上界.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù) ,
.
(1)當(dāng) 時,求函數(shù)
的最小值;
(2)當(dāng) 時,討論函數(shù)
的單調(diào)性;
(3)是否存在實(shí)數(shù),對任意的
,且
,有
,恒成立,若存在求出
的取值范圍,若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com