日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 以點(diǎn)A(4,-3)為直角頂點(diǎn)的Rt△OAB中,|AB|=2|OA|且點(diǎn)B縱坐標(biāo)大于0.
          (1)求向量數(shù)學(xué)公式的坐標(biāo);
          (2)求圓x2-6x+y2+2y=0關(guān)于直線OB對稱的圓的方程.

          解:(1)設(shè)=(μ,u),則由
          =+=(μ+4,u-3),且u-3>0
          ∴u=8=(6,8).
          (2)圓x2-6x+y2+2y=0的標(biāo)準(zhǔn)方程是(x-3)2+(y+1)2=10
          ∴圓心為(3,-1),半徑為
          由(1)知B(10,5),直線OB的方程為y=x
          設(shè)(3,-1)關(guān)于OB的對稱點(diǎn)為(x,y)則

          ∴所求圓方程為(x-1)2+(y-3)2=10.
          分析:(1)設(shè)出=(μ,u),利用垂直和|AB|=2|OA|,B縱坐標(biāo)大于0,求得μ,u.
          (2)先求圓心和半徑,再求對稱圓心坐標(biāo),可得對稱圓的方程.
          點(diǎn)評:本題考查平面向量的數(shù)量積,垂直的條件,點(diǎn)關(guān)于直線對稱的點(diǎn)的坐標(biāo)的求法,是中檔題,近年高考熱點(diǎn).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          以點(diǎn)A(4,-3)為直角頂點(diǎn)的Rt△OAB中,|AB|=2|OA|且點(diǎn)B縱坐標(biāo)大于0.
          (1)求向量
          .
          AB
          的坐標(biāo);
          (2)求圓x2-6x+y2+2y=0關(guān)于直線OB對稱的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在以O(shè)為原點(diǎn)的直角坐標(biāo)系中,點(diǎn)A(4,-3)為△OAB的直角頂點(diǎn),已知|AB|=2|OA|,且點(diǎn)B的縱坐標(biāo)大于0.
          (Ⅰ)求
          AB
          的坐標(biāo);
          (Ⅱ)求圓x2-6x+y2+2y=0關(guān)于直線OB對稱的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在以O(shè)為原點(diǎn)的直角坐標(biāo)系中,點(diǎn)A(4,-3)為△OAB的直角頂點(diǎn),若|AB|=2|OA|,且點(diǎn)B的縱坐標(biāo)大于0
          (1)求向量
          AB
          的坐標(biāo);
          (2)是否存在實數(shù)a,使得拋物線y=ax2-1上總有關(guān)于直線OB對稱的兩個點(diǎn)?若存在,求實數(shù)a的取值范圍,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年《新高考全案》高考總復(fù)習(xí)單元檢測卷09:直線與圓的方程(解析版) 題型:解答題

          以點(diǎn)A(4,-3)為直角頂點(diǎn)的Rt△OAB中,|AB|=2|OA|且點(diǎn)B縱坐標(biāo)大于0.
          (1)求向量的坐標(biāo);
          (2)求圓x2-6x+y2+2y=0關(guān)于直線OB對稱的圓的方程.

          查看答案和解析>>

          同步練習(xí)冊答案