日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)橢圓M:的離心率為,點(diǎn)A、B的坐標(biāo)分別為(a,0)、(0,-b),原點(diǎn)O到直線AB的距離為

          (Ⅰ)求橢圓M的方程;

          (Ⅱ)設(shè)點(diǎn)C為(-a,0),點(diǎn)P在橢圓M上(與A、C均不重合),點(diǎn)E在直線PC上,若直線PA的方程為y=kx-4,且,試求直線BE的方程.

          答案:
          解析:

            解:(Ⅰ)由

            由點(diǎn)(,0),(0,)知直線的方程為,

            于是可得直線的方程為

            因此,得,,

            所以橢圓的方程為  6分

            (Ⅱ)由(Ⅰ)知的坐標(biāo)依次為(2,0)、,

            因?yàn)橹本經(jīng)過點(diǎn),所以,得,

            即得直線的方程為

            因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/3049/0021/362c92c3cbab035a1d5364595d12db44/C/Image126.gif" width=71 HEIGHT=16>,所以,即

            設(shè)的坐標(biāo)為,則

            得,即直線的斜率為4

            又點(diǎn)的坐標(biāo)為,因此直線的方程為  12分


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:北京市順義區(qū)2012屆高三尖子生上學(xué)期綜合素質(zhì)展示數(shù)學(xué)文科試題 題型:044

          設(shè)橢圓M:的離心率為,點(diǎn)A(a,0),B(0,-b),原點(diǎn)O到直線AB的距離為

          (Ⅰ)求橢圓M的方程;

          (Ⅱ)設(shè)點(diǎn)C為(-a,0),點(diǎn)P在橢圓M上(與A、C均不重合),點(diǎn)E在直線PC上,若直線PA的方程為y=kx-4,且,試求直線BE的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          (本小題滿分13分)已知橢圓C1的離心率為,直線l: y-=x+2與.以原點(diǎn)為圓心、橢圓C1的短半軸長為半徑的圓O相切.

          (1)求橢圓C1的方程;

          (ll)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l2過點(diǎn)F價(jià)且垂直于橢圓的長軸,動(dòng)直線l2垂直于l1,垂足為點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;

          (III)過橢圓C1的左頂點(diǎn)A作直線m,與圓O相交于兩點(diǎn)R,S,若△ORS是鈍角三角形,     求直線m的斜率k的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省鄭州外國語學(xué)校高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          設(shè)橢圓M:的離心率為,點(diǎn)A(a,0),B(0,-b),原點(diǎn)O到直線AB的距離為
          (I)求橢圓M的方程;
          (Ⅱ)設(shè)點(diǎn)C為(-a,0),點(diǎn)P在橢圓M上(與A、C均不重合),點(diǎn)E在直線PC上,若直線PA的方程為y=kx-4,且,試求直線BE的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年內(nèi)蒙古包頭市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

          設(shè)橢圓M:的離心率為,點(diǎn)A(a,0),B(0,-b),原點(diǎn)O到直線AB的距離為
          (I)求橢圓M的方程;
          (Ⅱ)設(shè)點(diǎn)C為(-a,0),點(diǎn)P在橢圓M上(與A、C均不重合),點(diǎn)E在直線PC上,若直線PA的方程為y=kx-4,且,試求直線BE的方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案