日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)y=f(x)是定義在R上的增函數(shù),且函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,如果實數(shù)m,n滿足不等式組
          f(m2-6m+21)+f(n2-8n)<0
          m>3
          ,那么m2+n2的取值范圍是( 。
          分析:利用條件可得出函數(shù)的奇偶性,進(jìn)而再利用其單調(diào)性即可得出m、n的取值范圍,再畫出圖象,根據(jù)
          m2+n2
          表示的幾何意義即可求出其取值范圍.
          解答:解:∵函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,∴函數(shù)y=f(x)關(guān)于原點對稱,即為奇函數(shù);
          ∴由f(m2-6m+21)+f(n2-8n)<0得f(m2-6m+21)<-f(n2-8n)=f(-n2+8n)
          又∵函數(shù)y=f(x)是定義在R上的增函數(shù),
          ∴m2-6m+21<-n2+8n,
          ∴(m-3)2+(n-4)2<4.
          ∵實數(shù)m,n滿足不等式組
          f(m2-6m+21)+f(n2-8n)<0
          m>3
          ,即滿足
          (m-3)2+(n-4)2<4
          m>3

          作出圖象,即圖中的陰影部分所表示的點.
          m2+n2
          表示的是陰影部分的點到原點的距離,
          |PM|<
          m2+n2
          <|OC|+r

          求出M(3,2).
          32+22
          m2+n2
          32+42
          +2

          ∴13<m2+n2<49.
          故選B.
          點評:由函數(shù)的奇偶性和單調(diào)性正確得出m、n的取值范圍及根據(jù)條件作出圖形是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          16、已知函數(shù)y=f(x)是R上的奇函數(shù)且在[0,+∞)上是增函數(shù),若f(a+2)+f(a)>0,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          2、已知函數(shù)y=f(x+1)的圖象過點(3,2),則函數(shù)f(x)的圖象關(guān)于x軸的對稱圖形一定過點( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x<0時,f(x)=x(1-x),那么當(dāng)x>0時,f(x)=
          -x(1+x)
          -x(1+x)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0 時,f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
          [-3,3]
          [-3,3]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
          (1,3]
          (1,3]

          查看答案和解析>>

          同步練習(xí)冊答案