【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為
,以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸,建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(1)判斷直線與曲線
的位置關(guān)系,并說明理由;
(2)若直線和曲線
相交于
兩點(diǎn),且
,求直線
的斜率.
【答案】(1)直線與曲線
相交;(2)
.
【解析】試題分析:(1)由
,又直線
過點(diǎn)
,且該點(diǎn)到圓心的距離為
直線
與曲線
相交;(2)先當(dāng)驗(yàn)證直線
的斜率不存在時(shí),直線
過不成立
直線
必有斜率, 設(shè)其方程為
圓心到直線
的距離
的斜率為
.
試題解析:(1)因?yàn)?/span>,所以
,所以曲線
的直角坐標(biāo)方程為
,即
,因?yàn)橹本
過點(diǎn)
,且該點(diǎn)到圓心的距離為
,所以直線
與曲線
相交.
(2)當(dāng)直線的斜率不存在時(shí),直線
過圓心
,則直線
必有斜率, 設(shè)其方程為
,即
,圓心到直線
的距離
,
解得,所以直線
的斜率為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】全世界人們?cè)絹碓疥P(guān)注環(huán)境保護(hù)問題,某監(jiān)測(cè)站點(diǎn)于2016年8月某日起連續(xù)天監(jiān)測(cè)空氣質(zhì)量指數(shù)(
),數(shù)據(jù)統(tǒng)計(jì)如下:
(1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出的值,并完成頻率分布直方圖;
(2)由頻率分布直方圖求該組數(shù)據(jù)的平均數(shù)與中位數(shù);
(3)在空氣質(zhì)量指數(shù)分別屬于和
的監(jiān)測(cè)數(shù)據(jù)中,用分層抽樣的方法抽取5天,再從中任意選取2天,求事件
“兩天空氣都為良”發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實(shí)行二級(jí)階梯式水價(jià)計(jì)量辦法,具體如下:第一階梯,每戶居民月用水量不超過12噸,價(jià)格為4元/噸;第二階梯,每戶居民月用水量超過12噸,超過部分的價(jià)格為8元/噸.為了了解全市居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照,
,…,
分成8組,制成了如圖1所示的頻率分布直方圖.
(圖1) (圖2)
(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;
(Ⅱ)通過頻率分布直方圖,估計(jì)該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(fèi)(元)與月份
的散點(diǎn)圖,其擬合的線性回歸方程是
. 若張某2016年1~7月份水費(fèi)總支出為312元,試估計(jì)張某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若對(duì)于任意都有f(kx2)+f(2x﹣1)>0成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)
已知橢圓
的左焦點(diǎn)為
,右焦點(diǎn)為
,離心率
.過
的直線交橢圓于
、
兩點(diǎn),且
的周長為
.
(1)求橢圓的方程;
(2)設(shè)動(dòng)直線與橢圓
有且只有一個(gè)公共點(diǎn)
,且與直線
相交于點(diǎn)
.求證:以
為直徑的圓恒過一定點(diǎn)
.并求出點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若關(guān)于的不等式
在
上恒成立,求
的取值范圍;
(Ⅱ)設(shè)函數(shù),在(Ⅰ)的條件下,試判斷
在
上是否存在極值.若存在,判斷極值的正負(fù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,點(diǎn)
分別為橢圓的右頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn),且
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓
交于
兩點(diǎn),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx,則“b<0”是“f(f(x))的最小值與f(x)的最小值相等”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條不重合的直線和兩個(gè)不重合的平面
,若
,則下列四個(gè)命題:①若
,則
;②若
,則
; ③若
,則
;④若
,則
,其中正確命題的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com