日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=(x+1)lnx-a(x+1)(a∈R)
          (I)若當(dāng)x∈[1,+∞)時(shí),f'(x)>0恒成立,求a的取值范圍;
          (II)求函數(shù)的單調(diào)區(qū)間.
          【答案】分析:(I)先求出導(dǎo)函數(shù).再由f′(x)>0恒成立,分離參數(shù)得a<lnx++1(x≥1)恒成立,令h(x)=lnx++1,利用導(dǎo)數(shù)研究其最值,從而解決問題;
          (II)先寫出函數(shù)g(x)的解析式,再求出導(dǎo)數(shù)g′(x)=,下面對a進(jìn)行分類討論:當(dāng)a≥1時(shí),當(dāng)a<1時(shí),結(jié)合導(dǎo)數(shù)工具研究其單調(diào)區(qū)間即可.
          解答:解:x>0,f′(x)=lnx+-a.
          (I)f′(x)>0恒成立,即a<lnx++1(x≥1)恒成立,
          令h(x)=lnx++1,則h′(x)=≥0,
          ∴h(x)在[1,+∞)上是增函數(shù),
          ∴當(dāng)x∈[1,+∞)時(shí),h(x)最小值=h(1)=2,
          故a<2.
          (II)g(x)=f′(x)-=lnx+-a-=lnx++1-a,
          g′(x)=,
          當(dāng)a≥1時(shí),g′(x)>0,函數(shù)g(x)在(0,+∞)上遞增;
          當(dāng)a<1時(shí),g′(x)=0,得x=1-a,
          x∈(0,1-a)時(shí),g′(x)<0函數(shù)g(x)在(0,+∞)上遞減;
          x∈(1-a,+∞)時(shí),g′(x)>0函數(shù)g(x)在(0,+∞)上遞增;
          故函數(shù)的單調(diào)區(qū)間為:
          當(dāng)a≥1時(shí),函數(shù)g(x)遞增區(qū)間為:(0,+∞);
          當(dāng)a<1時(shí),函數(shù)g(x)遞增區(qū)間為:(1-a,+∞);函數(shù)g(x)遞減區(qū)間為:(0,1-a).
          點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,注意解題時(shí)要先分析函數(shù)的定義域.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
          (1)求函數(shù)f(x)的最小正周期;
          (2)若函數(shù)y=f(2x+
          π
          4
          )
          的圖象關(guān)于直線x=
          π
          6
          對稱,求φ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
          (1)求x<0,時(shí)f(x)的表達(dá)式;
          (2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=aInx-ax,(a∈R)
          (1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
          1
          x

          (2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
          m
          2
          ]
          ,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
          1
          f(n)
          }
          的前n項(xiàng)和為Sn,則S2010的值為( 。
          A、
          2011
          2012
          B、
          2010
          2011
          C、
          2009
          2010
          D、
          2008
          2009

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
           

          查看答案和解析>>

          同步練習(xí)冊答案