日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè),方程f(x)=x有唯一解,已知f(xn)=xn+1(n∈N*),且
          (1)求數(shù)列{xn}的通項公式;
          (2)若,且(n∈N*),求和Sn=b1+b2+…+bn
          (3)問:是否存在最小整數(shù)m,使得對任意n∈N*,有成立,若存在,求出m的值;若不存在,說明理由。

          解:(1)因方程f(x)=x有唯一解,
          可求
          從而得到


          又由已知

          數(shù)列是首項為,公差為的等差數(shù)列,

          所以數(shù)列{xn}的通項公式為
          (2)將xn代入an可求得




          。
           (3)∵ 對n∈N*恒成立,
          ∴只要即可,

          即要
          ∴m>2,故存在最小的正整數(shù)m=3。
          練習(xí)冊系列答案
        2. 1加1閱讀好卷系列答案
        3. 專項復(fù)習(xí)訓(xùn)練系列答案
        4. 初中語文教與學(xué)閱讀系列答案
        5. 閱讀快車系列答案
        6. 完形填空與閱讀理解周秘計劃系列答案
        7. 英語閱讀理解150篇系列答案
        8. 奔騰英語系列答案
        9. 標(biāo)準閱讀系列答案
        10. 53English系列答案
        11. 考綱強化閱讀系列答案
        12. 年級 高中課程 年級 初中課程
          高一 高一免費課程推薦! 初一 初一免費課程推薦!
          高二 高二免費課程推薦! 初二 初二免費課程推薦!
          高三 高三免費課程推薦! 初三 初三免費課程推薦!
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)選修4-2:矩陣與變換
          二階矩陣M對應(yīng)的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
          (Ⅰ)求矩陣M的逆矩陣M-1;
          (Ⅱ)設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知直線的極坐標(biāo)方程為ρsin(θ+
          π
          4
          )=
          2
          2
          ,圓M的參數(shù)方程為
          x=2cosθ
          y=-2+2sinθ
          (其中θ為參數(shù)).
          (Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
          (Ⅱ)求圓M上的點到直線的距離的最小值.
          (3)選修4一5:不等式選講
          已知函數(shù)f(x)=|x-1|+|x+3|.
          (Ⅰ)求x的取值范圍,使f(x)為常數(shù)函數(shù);
          (Ⅱ)若關(guān)于x的不等式f(x)-a≤0有解,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          滿足方程f(x)=x的根x0稱為函數(shù)y=f(x)的不動點,設(shè)函數(shù)y=f(x),y=g(x)都有不動點,則下列陳述正確的是
          (4)
          (4)

          (1)y=f(g(x))與y=f(x)具有相同數(shù)目的不動點  (2)y=f(g(x))一定有不動點
          (3)y=f(g(x))與y=g(x)具有相同數(shù)目的不動點  (4)y=f(g(x))可以無不動點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•三明模擬)(1)選修4-2:矩陣與變換
          設(shè)矩陣M=
          1a
          b1

          (I)若a=2,b=3,求矩陣M的逆矩陣M-1;
          (II)若曲線C:x2+4xy+2y2=1在矩陣M的作用下變換成曲線C':x2-2y2=1,求a+b的值.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為
          x=1+2cosα
          y=-1+2sinα
          (α為參數(shù)),點Q極坐標(biāo)為(2,
          4
          )

          (Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
          (Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
          (3)選修4-5:不等式選講
          設(shè)函數(shù)f(x)=|x+1|+|x-2|.
          (Ⅰ)求y=f(x)的最小值;
          (Ⅱ)若關(guān)于x的不等式f(x)≥4的解集為A,求集合A.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案