日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四棱錐中,底面為矩形,平面,中點.

          (1)證明://平面;
          (2)證明:平面.

          (1)參考解析;(2)參考解析

          解析試題分析:(1)直線與平面平行的證明,根據(jù)判斷定理要在平面內(nèi)找一條直線與與該直線平行.所以要證//平面,找到直線即可.
          (2)要證直線與平面垂直根據(jù)判斷定理要在平面內(nèi)找到兩條相交的直線與該直線垂直即可.通過分析直線AE⊥PD由題意可得;另外直線CD垂直平面PAD,所以有可得直線CD垂直直線AE.又由于直線CD與直線PD相交,所以可證得結(jié)論.
          試題解析:證明:(1)因為底面為矩形,
          所以 .又因為 平面,平面,
          所以 //平面.
          (2)因為,中點,

          所以,因為 平面,
          所以.又底面為矩形,
          所以.
          所以平面.
          所以.
          所以平面.
          考點:1.線面平行的判斷.2.線面垂直的判斷.3.線面關(guān)系與線線關(guān)系的相互轉(zhuǎn)化.4.空間圖像感.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,在正方體ABCD-A1B1C1D1中,對角線A1C與平面BDC1交于點O,AC、BD交于點M,E為AB的中點,F(xiàn)為AA1的中點.求證:
           
          (1)C1、O、M三點共線;
          (2)E、C、D1、F四點共面.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,在三棱柱ABC­A1B1C1中,底面△ABC是等邊三角形,DAB中點.
           
          (1)求證:BC1∥平面A1CD;
          (2)若四邊形BCC1B1是矩形,且CDDA1,求證:三棱柱ABC­A1B1C1是正三棱柱.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,斜四棱柱的底面是矩形,平面⊥平面,分別為的中點.

          求證:
          (1);(2)∥平面.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (1)如圖所示,證明命題“a是平面π內(nèi)的一條直線,bπ外的一條直線(b不垂直于π),c是直線bπ上的投影,若ab,則ac”為真.

          (2)寫出上述命題的逆命題,并判斷其真假(不需證明).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖四棱錐中,底面是平行四邊形,平面的中點,.

          (1)試判斷直線與平面的位置關(guān)系,并予以證明;
          (2)若四棱錐體積為  ,,求證:平面.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,四棱錐中,底面為直角梯形,, 平面,且,的中點

          (1) 證明:面
          (2) 求面與面夾角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,是邊長為2的正三角形,若平面,平面平面,,且

          (Ⅰ)求證://平面;
          (Ⅱ)求證:平面平面

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,在正三棱柱中,,分別為,的中點.

          (1)求證:平面;
          (2)求證:平面平面.

          查看答案和解析>>

          同步練習冊答案