日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,菱形的邊長為,,,將菱形沿對角線折起,得到三棱錐,點是棱的中點,

          )求證:平面

          )求證:平面平面

          )求三棱錐的體積.

          【答案】)證明見解析;()證明見解析;(

          【解析】分析:(1)由題可知分別為中點,所以,平面.

          (2)由已知條件結(jié)合勾股定理得,又因為四邊形為菱形得,所以平面,證得平面平面

          (3)由三棱錐的體積等于三棱錐的體積,從而得三棱錐的體積.

          詳解:()證明:∵點是菱形的對角線交點,

          的中點,

          又∵點是棱的中點,

          的中位線,,

          平面平面,

          平面

          )證明:由題意,

          ,

          ,

          又∵菱形中,,

          ,

          平面

          平面,

          ∴平面平面

          ∵三棱錐的體積等于三棱錐的體積由()知平面,

          是三棱錐的高,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)證明當時,關(guān)于的不等式恒成立;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校學(xué)生研究學(xué)習(xí)小組發(fā)現(xiàn),學(xué)生上課的注意力指標隨著聽課時間的變化而變化,老師講課開始時,學(xué)生的興趣激增;接下來學(xué)生的興趣將保持較理想的狀態(tài)一段時間,隨后學(xué)生的注意力開始分散.設(shè)表示學(xué)生注意力指標.

          該小組發(fā)現(xiàn)隨時間(分鐘)的變化規(guī)律(越大,表明學(xué)生的注意力越集中)如下:).

          若上課后第分鐘時的注意力指標為,回答下列問題:

          )求的值.

          )上課后第分鐘和下課前分鐘比較,哪個時間注意力更集中?并請說明理由.

          )在一節(jié)課中,學(xué)生的注意力指標至少達到的時間能保持多長?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知橢圓的右準線的方程為,焦距為.

          1求橢圓的方程;

          2過定點作直線與橢圓交于點(異于橢圓的左、右頂點)兩點,設(shè)直線與直線相交于點.

          ,試求點的坐標;

          求證:點始終在一條直線上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面為矩形, ,

          .

          (1)求直線與平面所成角的正弦值;

          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=Asin(ωxφ)(A≠0,ω>0,φ<)的圖象關(guān)于直線對稱,它的最小正周期為π,則(   )

          A. f(x)的圖象過點(0,) B. f(x)上是減函數(shù)

          C. f(x)的一個對稱中心是 D. f(x)的一個對稱中心是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】本題滿分12分已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系的x軸的正半軸重合,且兩個坐標系的單位長度相同已知直線l的參數(shù)方程為t為參數(shù),曲線C的極坐標方程為

          若直線l的斜率為-1,求直線l與曲線C交點的極坐標

          若直線l與曲線C相交弦長為,求直線l的參數(shù)方程標準形式

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點在函數(shù)的圖象上,數(shù)列的前項和為,數(shù)列的前 項和為,且的等差中項.

          )求數(shù)列的通項公式.

          )設(shè),數(shù)列滿足.求數(shù)列的前項和

          )在()的條件下,設(shè)是定義在正整數(shù)集上的函數(shù),對于任意的正整數(shù),,恒有成立,且為常數(shù),),試判斷數(shù)列是否為等差數(shù)列,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某次足球比賽共12支球隊參加,分三個階段進行.

          (1)小組賽:經(jīng)抽簽分成甲、乙兩組,每組6隊進行單循環(huán)比賽,以積分及凈剩球數(shù)取前兩名;

          (2)半決賽:甲組第一名與乙組第二名,乙組第一名與甲組第二名作主客場交叉淘汰賽(每兩隊主客場各賽一場)決出勝者;

          (3)決賽:兩個勝隊參加決賽一場,決出勝負.

          問全程賽程共需比賽多少場?

          查看答案和解析>>

          同步練習(xí)冊答案