日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直角梯形ABCD中∠DAB=90°,ADBC,AB=2,AD=
          3
          2
          ,BC=
          1
          2
          .橢圓G以A、B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)D.
          (Ⅰ)建立適當(dāng)坐標(biāo)系,求橢圓G的方程;
          (Ⅱ)若點(diǎn)E滿足
          EC
          =
          1
          2
          AB
          ,問(wèn)是否存在不平行AB的直線l與橢圓G交于M、N兩點(diǎn)且|ME|=|NE|,若存在,求出直線l與AB夾角正切值的范圍,若不存在,說(shuō)明理由.
          (Ⅰ)如圖,以AB所在直線為x軸,
          AB中垂線為y軸建立直角坐標(biāo)系,⇒A(-1,0),B(1,0).
          設(shè)橢圓方程為
          x2
          a2
          +
          y2
          b2
          =1

          x=c⇒y0=
          b2
          a
          ,
          C=1
          b2
          a
          =
          3
          2
          a=2
          b=
          3

          ∴橢圓C的方程是:
          x2
          4
          +
          y2
          3
          =1

          (Ⅱ)
          EC
          =
          1
          2
          AB
          ⇒E(0,
          1
          2
          )
          ,l⊥AB時(shí)不符;
          設(shè)l:y=kx+m(k≠0),
          y=kx+m
          x2
          4
          +
          y2
          3
          =1
          ⇒(3+4k2)x2+8kmx+4m2-12=0

          M、N存在⇒?△>0⇒64k2m2-4(3+4k2)•(4m2-12)>0⇒4k2+3≥m2
          設(shè)M(x1,y1),N(x2,y2),MN的中點(diǎn)F(x0,y0
          x0=
          x1+x2
          2
          =-
          4km
          3+4k2
          ,
          y0=kx0+m=
          3m
          3+4k2

          |ME|=|NE|⇒MN⊥EF⇒
          y0-
          1
          2
          x0
          =-
          1
          k
          3m
          3+4k2
          -
          1
          2
          -
          4km
          3+4k2
          =-
          1
          k
          ⇒m=-
          3+4k2
          2

          4k2+3≥(-
          3+4k2
          2
          )2
          ,∴4k2+3≤4,
          ∴0<k2≤1,∴-1≤k≤1且k≠0.
          ∴l(xiāng)與AB的夾角的范圍是(0,
          π
          4
          ]

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          設(shè)是橢圓的兩個(gè)焦點(diǎn),是橢圓上任意一點(diǎn),求的最大值和最小值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          橢圓有這樣的光學(xué)性質(zhì):從橢圓的一個(gè)焦點(diǎn)出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過(guò)橢圓的另一個(gè)焦點(diǎn),今有一個(gè)水平放置的橢圓形臺(tái)球盤,點(diǎn)是它的焦點(diǎn),長(zhǎng)軸長(zhǎng)為,焦距為,靜放在點(diǎn)的小球(小球的半徑不計(jì)),從點(diǎn)沿直線出發(fā),經(jīng)橢圓壁反彈后第一次回到點(diǎn)時(shí),小球經(jīng)過(guò)的路程是
          A.B.C.D.以上答案均有可能

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知兩個(gè)定點(diǎn)F1(-4,0),F(xiàn)2(4,0),且|MF1|+|MF2|=8,則點(diǎn)M的軌跡方程是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          設(shè)F1(-4,0)、F2(4,0)為定點(diǎn),動(dòng)點(diǎn)M滿足|MF1|+|MF2|=8,則動(dòng)點(diǎn)M的軌跡是( 。
          A.橢圓B.直線C.圓D.線段

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,設(shè)拋物線c1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2,以F1、F2為焦點(diǎn),離心率e=
          1
          2
          的橢圓c2與拋物線c1在x軸上方的一個(gè)交點(diǎn)為P.
          (1)當(dāng)m=1時(shí),求橢圓的方程;
          (2)在(1)的條件下,直線l經(jīng)過(guò)橢圓c2的右焦點(diǎn)F2,與拋物線c1交于A1、A2,如果以線段A1A2為直徑作圓,試判斷點(diǎn)P與圓的位置關(guān)系,并說(shuō)明理由;
          (3)是否存在實(shí)數(shù)m,使得△PF1F2的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù)m;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          平面內(nèi)已知兩點(diǎn)A(0,2)、B(0,-2),若動(dòng)點(diǎn)P滿足|PA|+|PB|=4,則點(diǎn)P的軌跡是(  )
          A.橢圓B.雙曲線C.拋物線D.線段

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          橢圓
          x2
          16
          +
          y2
          m
          =1
          過(guò)點(diǎn)(2,3),橢圓上一點(diǎn)P到兩焦點(diǎn)F1、F2的距離之差為2,
          (1)求橢圓方程
          (2)試判斷△PF1F2的形狀.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          點(diǎn)P(2cosα,
          3
          sinα)
          (α∈R)與橢圓C:
          x2
          4
          +
          y2
          3
          =1
          的位置關(guān)系是( 。
          A.點(diǎn)P在橢圓C上
          B.點(diǎn)P與橢圓C的位置關(guān)系不能確定,與α的取值有關(guān)
          C.點(diǎn)P在橢圓C內(nèi)
          D.點(diǎn)P在橢圓C外

          查看答案和解析>>

          同步練習(xí)冊(cè)答案