日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則,當(dāng)且僅當(dāng)時(shí)上式取等號(hào).利用以上結(jié)論,可以得到函數(shù))的最小值為   
          【答案】分析:利用題中的結(jié)論:“,當(dāng)且僅當(dāng)時(shí)上式取等號(hào)”,將f(x)變形為 即可.
          解答:解:將f(x)變形為
          由題中結(jié)論得:

          當(dāng)且僅當(dāng)
          時(shí)上式取最小值,即[f(x)]min=25.
          故答案為:25.
          點(diǎn)評(píng):本題考查不等式的應(yīng)用,另外給你一種解題工具,讓你應(yīng)用它來解答某一問題,這是近年考試命題的一種新穎的題型之一,很值得讀者深刻反思和領(lǐng)悟當(dāng)中的思維本質(zhì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
          a2
          x
          +
          b2
          y
          (a+b)2
          x+y
          ,當(dāng)且僅當(dāng)
          a
          x
          =
          b
          y
          時(shí)上式取等號(hào).利用以上結(jié)論,可以得到函數(shù)f(x)=
          2
          x
          +
          9
          1-2x
          x∈(0,
          1
          2
          )
          )的最小值為
           
          ,取最小值時(shí)x的值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
          a2
          x
          +
          b2
          y
          (a+b)2
          x+y
          ,當(dāng)且僅當(dāng)
          a
          x
          =
          b
          y
          時(shí)取等號(hào).利用以上結(jié)論,函數(shù)f(x)=
          2
          x
          +
          9
          1-2x
          (x∈(0,
          1
          2
          ))取得最小值時(shí)x的值為( 。
          A、1
          B、
          1
          5
          C、2
          D、
          1
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
          a2
          x
          +
          b2
          y
          (a+b)2
          x+y
          ,當(dāng)且僅當(dāng)
          a
          x
          =
          b
          y
          時(shí)上式取等號(hào).利用以上結(jié)論,可以得到函數(shù)f(x)=
          2
          x
          +
          9
          1-2x
          x∈(0,
          1
          2
          )
          )的最小值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•湖南模擬)選做題(請(qǐng)考生在第16題的三個(gè)小題中任選兩題作答,如果全做,則按前兩題記分,要寫出必要的推理與演算過程)
          (1)如圖,已知Rt△ABC的兩條直角邊BC,AC的長(zhǎng)分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,試求BD的長(zhǎng).
          (2)已知曲線C的參數(shù)方程為
          x=1+cosθ
          y=sinθ
          (θ為參數(shù)),求曲線C上的點(diǎn)到直線x-y+1=0的距離的最大值.
          (3)若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
          a2
          x
          +
          b2
          y
          (a+b)2
          x+y
          ,當(dāng)且僅當(dāng)
          a
          x
          =
          b
          y
          時(shí)上式取等號(hào).請(qǐng)利用以上結(jié)論,求函數(shù)f(x)=
          2
          x
          +
          9
          1-2x
          (x∈0,
          1
          2
          )的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):6.4 基本不等式(1)(解析版) 題型:選擇題

          若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則+,當(dāng)且僅當(dāng)=時(shí)取等號(hào).利用以上結(jié)論,函數(shù)f(x)=+(x∈(0,))取得最小值時(shí)x的值為( )
          A.1
          B.
          C.2
          D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案